Quasi-Realistic Heterotic String Vacua Left Right Symmetric Model

Glyn Harries

In collaboration with Alon Faraggi & Hasan Sonmez

First Year Annual Presentations

20/05/2015

Glyn Harries (UoL)

Quasi-Realistic Heterotic String Vacua

▶ < ≧ ▶ ≧ ∽ < ⊂ 20/05/2015 1 / 19

(日) (同) (三) (三)

Outline

- Introduction
- Free Fermionic Construction
- ABK Rules and GSO Projections
- Current project and results
- Conclusion

→ Ξ →

- The motivation of this project is to create quasi-realistic string vacua
- This project uses the free fermionic construction of heterotic superstring theory
- The basis vectors chosen produce a Left Right symmetric model
- Therefore the visible gauge group at the string scale is $SU(3) \times U(1) \times SU(2)_L \times SU(2)_R$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• 4 Flat Space-time Dimensions

- 4 Flat Space-time Dimensions
- $\mathcal{N} = 1$ Supersymmetry

(日) (同) (三) (三)

- 4 Flat Space-time Dimensions
- $\mathcal{N} = 1$ Supersymmetry
- 3 Chiral Generations of Matter

(日) (同) (三) (三)

• Instead of associating the degrees of freedom needed to cancel the conformal anomaly as spacetime dimensions, we can interpret them as free fermions which propagate on the string worldsheet

- Instead of associating the degrees of freedom needed to cancel the conformal anomaly as spacetime dimensions, we can interpret them as free fermions which propagate on the string worldsheet
- The string worldsheet can be mapped to a genus g Riemann surface
- We are interested in the partition function which is the integrand of the vacuum to vacuum amplitude
- Therefore we are considering a g = 1 Riemann surface *i.e* a torus

When the fermions are propagated around the two incontractible loops they pick up a phase

$$f \to -e^{i\pi\alpha(f)}f$$
 where $\alpha(f) \in (-1,1]$

Assigning different boundary conditions to each of the fermions around these loops results in different models

Free Fermionic Construction

The states on the worldsheet are

	Label	Description
Left-moving	X^{μ}	Bosonic coordinates with spacetime index, $\mu = 0, \dots, 3$
	ψ^{μ}	Majorana–Weyl superpartners of the bosonic coordinates with spacetime index
	$\chi^{1,,6}$	Majorana–Weyl superpartners to the six compactified di- mensions
	$y^{1,,6}, w^{1,,6}$	Majorana–Weyl fermions that correspond to the bosons describing the six compactified dimensions in the bosonic formulation
Right-moving	\overline{X}^{μ}	Bosonic coordinates with spacetime index
	$\overline{y}^{1,\dots,6}, \overline{w}^{1,\dots,6}$	Majorana–Weyl fermions that correspond to the bosons describing the six compactified dimensions in the orbifold formulation
	$\overline{\psi}^{1,\dots,5},\overline{\eta}^{1,2,3}$	Complex fermions that describe the visible gauge sector
	$\overline{\phi}^{1,,8}$	Complex fermions that describe the hidden gauge sector

There are 18 free fermions in the left moving supersymmetric sector and 44 free fermions in the right moving sector

Glyn Harries (UoL)

Quasi-Realistic Heterotic String Vacua

20/05/2015 7 / 19

A model is defined by specifying two ingredients

- A set of boundary condition basis vectors
- The one loop phases $C \begin{pmatrix} b_i \\ b_j \end{pmatrix}$ for all pairs of the basis vectors

イロト イヨト イヨト

- The basis vectors and one loop coefficients must satisfy the ABK rules
- These are derived from modular invariance conditions

(日) (同) (三) (三)

The Spacetime Spin Statistics Index is

$$\delta_{b_i} = e^{i\pi b_i(\psi^{\mu})} = \begin{cases} -1 & b_i(\psi^{\mu}) = 1\\ +1 & b_i(\psi^{\mu}) = 0 \end{cases}$$

- If the basis vector specifies ψ^{μ} is periodic then $\delta_{b_i}=-1$
- If the basis vector specifies ψ^{μ} is anti-periodic then $\delta_{b_i}=0$

• The equation for the GSO projection is

$$e^{i\pi b_i\cdot F_\alpha}\left|s\right\rangle_\alpha = \delta_\alpha C \begin{pmatrix} \alpha\\ b_i \end{pmatrix}^* \left|s\right\rangle_\alpha$$

- This selects the states that are either kept in or projected out of the spectrum
- If the equation is satisfied by a state then it is kept, else it is projected out.

Current Project

The current project has the basis vectors

$$\begin{split} &\mathbb{I} = \{\psi_{1,2}^{\mu}, \chi^{12}, \chi^{34}, \chi^{56}, y^{12}, y^{34}, y^{56}, w^{12}, w^{34}, w^{56} \mid \bar{y}^{12}, \bar{y}^{34}, \bar{y}^{56}, \bar{w}^{12}, \\ &\bar{w}^{34}, \bar{w}^{56}, \bar{\psi}^{1,\dots,5}, \bar{\eta}^{1,2,3}, \bar{\phi}^{1,\dots,8} \} \\ &S = \{\psi_{1,2}^{\mu}, \chi^{12}, \chi^{34}, \chi^{56} \} \\ &e_i = \{y^i, w^i \mid \bar{y}^i, \bar{w}^i \} \\ &b_1 = \{\chi^{34}, \chi^{56}, y^{34}, y^{56} \mid \bar{y}^{34}, \bar{y}^{56}, \bar{\psi}^{1,\dots,5}, \bar{\eta}^1 \} \\ &b_2 = \{\chi^{12}, \chi^{34}, y^{12}, y^{56} \mid \bar{y}^{12}, \bar{y}^{56}, \bar{\psi}^{1,\dots,5}, \bar{\eta}^2 \} \\ &z_1 = \{\bar{\phi}^{1,\dots,4} \} \\ &z_2 = \{\bar{\phi}^{5,\dots,8} \} \\ &z_3 = \{\bar{\phi}^{1,2}, \bar{\phi}^{7,8} \} \\ &\alpha = \{\bar{\psi}^{1,2,3} = \frac{1}{2}, \bar{\eta}^{1,2,3} = \frac{1}{2}, \bar{\phi}^{1,2} = \frac{1}{2} \} \end{split}$$

20/05/2015 12 / 19

<ロ> (日) (日) (日) (日) (日)

Matter Spectrum B_{pqrs}

- The observable matter spectrum can be calculated by performing the GSO projections on B_{pqrs} which is a linear combination of basis vectors
- For example

$$B_{pqrs}^{(1)} = S + b_1 + pe_3 + qe_4 + re_5 + se_6$$

= $\{\psi^{\mu}, \chi^{1,2}, (1-p)y^3 \bar{y}^3, pw^3 \bar{w}^3, (1-q)y^4 \bar{y}^4, qw^4 \bar{w}^4, (1-r)y^5 \bar{y}^5, rw^5 \bar{w}^5, (1-s)y^6 \bar{y}^6, sw^6 \bar{w}^6, \bar{\eta}^1, \bar{\psi}^{1,\dots,5}\}$

イロト 不得下 イヨト イヨト

- Under the GSO projection of the basis vector b_1 the fermions $\{\bar{\eta}^1,\bar{\psi}^{1,\dots,5}\}$ are isolated
- Under b_2 this splits to give $\{\bar{\eta}^1\}, \{\bar{\psi}^{1,\dots,5}\}$
- Performing the α GSO projection splits this into the Left Right Symmetric model

くほと くほと くほと

Matter Spectrum $B_{pqrs}^{(1)}$

• The coding is written in Java

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

- The coding is written in Java
- It performs the GSO projections and scans for vacua which are consistent with the contraints specified

• • = • •

- The coding is written in Java
- It performs the GSO projections and scans for vacua which are consistent with the contraints specified
- Currently the observable matter spectrum is being written

- The coding is written in Java
- It performs the GSO projections and scans for vacua which are consistent with the contraints specified
- Currently the observable matter spectrum is being written
- The program can also check for vacua criteria such as light or heavy Higgs, exotic matter states *etc.*

- The choice of basis vectors generates string models which are left right symmetric
- The program currently does give models with ${\cal N}=1$ supersymmetry and 3 chiral generations of matter
- Further work to be completed is to fully complete the section of the program which tests the matter spectrum
- The program must also be extended to correctly test for light and heavy Higgs particles, exotic states and gauge group enhancements

- 4 同 6 4 日 6 4 日 6

Conclusions

Thank you for listening

▶ < ≣ > ≣ ∽ < ⊂ 20/05/2015 18 / 19

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

References

ABK rules:

I. Antoniadis and C. Bachas. 4d fermionic superstrings with arbitrary twists. Nuclear Physics B, 298(3):586 - 612, 1988.
I. Antoniadis and C. Bachas, and C. Kounnas. Four-dimensional

superstrings. Nuclear Physics B, 289(0):87 - 108, 1987

• Figures 1 and 2:

"Light U(1)'s in Heterotic-string Models' - Viraf M. Mehta - September 2013

- "Classification of the Flipped SU(5) Heterotic-String Vacua" Hasan Sonmez String Phenomenology 2014 Trieste Talk
- "Semi-Realistic Heterotic-String Vacua" Johar M. Ashfaque String Theory Seminar May 2015

- 4 同 6 4 日 6 4 日 6