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Holographic Motivation Construction Interpretation Conclusion

AdSd+1/CFTd

asymptotically AdS gravity in bulk ←→ CFT on boundary

strong/weak coupling duality

explore previously inaccessible systems e.g. AdS/CMT
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Holographic Motivation Construction Interpretation Conclusion

AdS/CMT

black objects in bulk

thermal ensemble in field theory
with same thermodynamic

properties (T , S , µ, . . . )

CMT obeys all thermodynamic laws.

There is a well established correspondence between laws of
thermodynamics and laws of black hole mechanics.

We need to build black objects that satisfy all of these.
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Holographic Motivation Construction Interpretation Conclusion

Nernst Law/3rd law of thermodynamics

All black objects seem to satisfy the 0th, 1st and 2nd laws.

There are several different forms of third law.

We follow strictest definition (unique ground state):

S
T−→0−−−−→ 0 holding other parameters fixed

Said to have vanishing entropy in extremal limit.

Easy to find black objects with S(T = 0) 6= 0 indicating no
unique ground state (there are ways to account for this!)

Are there gravitational systems with S
T−→0−−−−→ 0 making them

suitable duals to CMT systems?
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Holographic Motivation Construction Interpretation Conclusion

Aims

Cardoso et al. [2011]: 4d “Nernst” brane with s(T = 0) = 0.

Goal: Systematically construct a family of non-extremal black

branes in 4d, N = 2 gSUGRA s.t. s
T−→0−−−−→ 0 i.e. Nernst branes.

Why non-extremal?

Need non-extremal to see limiting behaviour of Nernst Law.

Extremal Nernst branes turn out to not be completely regular
suggesting breakdown of effective theory - examine
non-extremal solns in near extremal limit to study this.
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Holographic Motivation Construction Interpretation Conclusion

gSUGRA Lagrangian

4d, N = 2 U(1) ⊂ SU(2)R gSUGRA with n VMs coupled to GM:

e−1
4 L4 = − 1

2κ2
R4 − gIJ∂µ̂X

I∂µ̂X̄ J +
1

4
IIJF I

µ̂ν̂F
J|µ̂ν̂ +

1

4
RIJF

I
µ̂ν̂ F̃

J|µ̂ν̂ − V (X , X̄ ).

V (X , X̄ ) describes the gauging.

µ̂ = 0, . . . , 3, I , J = 0, . . . , n.
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Holographic Motivation Construction Interpretation Conclusion

3d Lagrangian

Seek stationary brane soln ⇒ dim red all fields over timelike S1.

e.g. KK ansatz: ds2
4 = −eφ (dt + Vµdx

µ)2 + e−φds2
3

with φ,V the KK scalar and vector resp.

Repackage d.o.f. of 3d Euclidean theory using 4n + 5 real scalars:
{qa, q̂a, φ̃}.
Restrict to static and purely imaginary field config to find:

e−1
3 L3 = −1

2
R3 − H̃ab

(
∂µq

a∂µq
b − ∂µq̂a∂µq̂b − g agb

)
+ 4 (g aqa)2
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Holographic Motivation Construction Interpretation Conclusion

EoMs

Scalar equations of motion:

∇2q̂a = 0

∇2qa +
1

2
∂aH̃

bc (∂µqb∂
µqc − ∂µq̂b∂

µq̂c)−
1

2
∂aH̃bcg

bg c + 4H̃abg
b (g cqc) = 0

−1

2
R3|µν − H̃ab (∂µqa∂νqb − ∂µq̂a∂ν q̂b) + gµν

(
−H̃abg

agb + 4 (g aqa)
2
)
= 0

Goal: solve these EoMs to find 3d instantons that we can lift back
to regular 4d black branes.

We want Nernst brane solutions supported by:

single electric charge, Q0

electric fluxes g1, . . . , gn
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Holographic Motivation Construction Interpretation Conclusion

Regular Black Brane Solution

Black brane solution has metric

ds2
4 = −eφdt2 + e−φ+4ψdτ2 + e−φ+2ψ

(
dx2 + dy2

)
Recall ds2

4 = −eφdt2 + e−φds2
3 , ds2

3 = e4ψdτ2 + e2ψ
(
dx2 + dy2

)
N.B. τ → 0 represents the asymptotic regime and τ =∞ is the event horizon.

The metric d.o.f. are

e−4ψ =

(
1

B0

)3

sinh3 (B0τ)eB0τ ,

eφ = −2H =
1

2
(−q0)

1
2 (f (q1, . . . , qn))−

1
2 ,

with scalar fields given by

˙̂q0 = −Q0, q0 = ±
−Q0

B0
sinh

(
B0τ + B0

h0

Q0

)
, qA = ±

3

8ngA

(
1

B0

) 1
2

e
1
2
B0τ (sinh (B0τ))

1
2

Leaves a family of solns parameterised by B0 and h0.
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Change of Coordinates

It’s convenient to change to the radial coordinate ρ given by

e−2B0τ = 1− 2B0

ρ
= W (ρ)

The scalars become

q0 = ± H0

W
1
2

, qA = ± 3

8ngA
(ρW )−

1
2 with H0(ρ) a harmonic fn.

The general expression for the 4d line element is

ds2
4 = −H− 1

2 ρ
3
4 dt2 +H 1

2 ρ−
7
4
dρ2

W
+H 1

2 ρ
3
4

(
dx2 + dy2

)
where H is a fn of H0, gA.

This change of coordinates makes limits more transparent.
Horizon now at ρ = 2B0 and asymptotic region at ρ→∞.

B0 → 0 reproduces extremal soln in literature (∴ B0 is non-ext
parameter).
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Thermodynamics

Zooming in on near-horizon geometry, one can compute the horizon
temperature and entropy density of the black brane. These are
related by

B0 = 2πsTH

We can also look at the asymptotic values of the 4d gauge fields to
find the chemical potential

µ =
1

2

(
B0

Q0

)[
coth

(
B0h0

Q0

)
− 1

]
Have a 2 parameter family with (B0, h0) controlling:

brane geometry on gravity side
thermodynamic quantities s,TH and µ on CMT side
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Holographic Motivation Construction Interpretation Conclusion

Equation of State

Can combine above expressions to find the equation of state

s3 = 4πZ 2TH

(
1 +

2πsTH

Q0µ

)
Z is fn of charges and fluxes.

TH

s

d
c
b
aμ=0.1

μ=0.25

μ=1

μ=10,000

s

TH0

We see that s → 0
as we send TH → 0
so we are justified in
calling our solutions
Nernst branes.

Smooth crossover in behaviour from:

s ∼ T
1
3

H regime when TH/µ� 1
s ∼ TH regime when TH/µ� 1.
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hvLif Spacetimes

Want to look at the geometry of our 2 parameter family.

∃ 4 cases to consider depending on whether B0, h0 are zero or not.

We consider the near-horizon and asymptotic geometries (IR and
UV of field theory) of all 4 cases.

In each case, find a hyperscaling-violating Lifshitz geometry:

ds2
d+2 = r−

2(d−θ)
d

(
−r−2(z−1)dt2 + dr2 + dx2

i

)
Under t → λz t, r → λr , xi → λxi we find ds → λ

θ
d ds.

z is Lifshitz exponent, θ is hyperscaling violating exponent
(z , θ) = (1, 0) returns AdSd+2

Don’t worry about not having asymptotically AdS solns.

Recently there has been much work on hvLif holography.

CMTs are inherently non-relativistic.
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Holographic Motivation Construction Interpretation Conclusion

hvLif Geometries

hvLif Geometries

B0 h0
Horizon

(z , θ)
Asymptotic

(z , θ)
B0 = 0 (TH = 0) h0 = 0 (µ→∞) (3, 1) (3, 1)
B0 = 0 (TH = 0) h0 6= 0 (µ finite) (3, 1) (1,−1)
B0 6= 0 (TH 6= 0) h0 = 0 (µ→∞) (0, 2) (3, 1)
B0 6= 0 (TH 6= 0) h0 6= 0 (µ finite) (0, 2) (1,−1)

Some comments:

B0 = 0, h0 = 0 (TH = 0, µ→∞) is a global solution
⇒ interpret as gravitational ground state.

B0 = 0, h0 6= 0 (TH = 0, µ finite) is extremal Nernst brane soln of
Cardoso et al.

B0 (resp. h0) controls near horizon (resp. asymptotic) geometry.
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Infinite Tidal Forces

ρ coordinate ←→ energy scale in field theory.
∃ some bad behaviour for small ρ (IR of field theory)

All curvature invariants finite as ρ→ 0 ⇒ no curvature singularity.
The singular behaviour in question is less severe:

T

S

ρ=0 ρ=2B0

ρ=∞

In hvLif spacetime, geodesic
acceleration is

∇T∇TS = R(S ,T )T

with

R(S ,T ) ∼ z − 1

ρ2z

Extremal (B0 = 0): z = 3 near horizon so R(S ,T )→∞ as ρ→ 0.
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Holographic Motivation Construction Interpretation Conclusion

Deep IR Spaghettification

Infinite tidal forces result
in “spaghettification”
of infalling observers.

Extremal (B0 = 0): 4d scalars ∼ ρ−1/4 and blow up on horizon.

Non-extremal (B0 6= 0): Horizon at ρ = 2B0 providing protection.
Singular behaviour occurs behind the horizon.

Tidal forces still large for low temp (low B0) case.

Field theory can’t be trusted in deep IR (very low temps).
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Is There a UV Duality?

s ∼ T 3 in far UV

s ∼ T
1
3

s ∼ T

µ

T
H

1

Eqn of state for gravity soln,

s3 = 4πZ 2TH

(
1 + 2πsTH

Q0µ

)
,

gives the following phase diagram.

Scaling argument ⇒ s ∼ T
d−θ
z

for field theory

Do the predictions match?

B0 6= 0, h0 = 0 (TH 6= 0, µ→∞):

Gravity ⇒ s ∼ T
1
3

Field theory has (z , θ) = (3, 1)⇒ s ∼ T
1
3

B0 6= 0, h0 6= 0 (TH 6= 0, µ finite):

Gravity ⇒ s ∼ T
1
3 or s ∼ T depending on µ

Field theory has (z , θ) = (1,−1)⇒ s ∼ T 3

Don’t trust duality in deep UV - extra d.o.f.s become relevant.
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Conclusion

Family of non-extremal black branes whose entropy density vanishes
in extremal limit. These are Nernst branes.

Should be holographically useful.

∃ holographic duality in finite region of parameter space: excluding
deep IR/UV.

Future work (ask for more details):

1 V. special lift to 5d - fix IR and UV problems

2 Dyonic configurations - phase transitions

3 Entanglement entropy as an a-function?

4 hidden Fermi surfaces?

D. Errington Slide 17 / 17



Holographic Motivation Construction Interpretation Conclusion

Thank You!
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