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Introduction

Consider a renormalizable QFT with couplings gI at energy
scale µ. Zamolodchikov (1986) showed:

• For 2D QFT, ∃ c(µ,gI) decreasing monotonically under RG
flow.

• At a fixed point g∗

I , c(µ,g∗

I ) = c, the central charge.

The central charge of a 2D QFT appears in the Trace anomaly:

The Trace anomaly

2D : 〈T µ
µ〉 = −

c
12

R

4D : 〈T µ
µ〉 = cF −

1
4

aG + ...
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Cardy (1988) conjectured there could be a generalization:

• For 4D QFT, ∃A(µ,gI) decreasing monotonically under RG
flow. (strong a-theorem)

• At a fixed point g∗

I , A(µ,g∗

I ) =
1
4a.

• Alternatively, ∃A(µ,gI) such that aUV − aIR > 0. (weak
a-theorem)

Jack and Osborn (1990) subsequently showed that

• For 4D QFT, ∃A such that ∂IA = TIJβ
J .

• At a fixed point g∗

I , A(µ,g∗

I ) =
1
4a.

Hence, if GIJ = T(IJ) is positive-definite, then

µ
d

dµ
A = βI∂IA = βIGIJβ

J ;

that is, A monotonically decreases along RG flow.
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The key equation

dA = dgITIJβ
J (1)

Even if GIJ is not positive-definite, the existence of such an A
provides consistency conditions on the form of the β-functions
in a QFT.

So, we can expand perturbatively and solve!
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The a-theorem in D=4

Published in JHEP 1501 (2015) 138.
General theory has couplings {λ, y ,g}. We use diagrammatic
notation, e.g. Yukawa coupling:

yiab →
a

i

b

Summed indices represent contractions:

yiacyjcd yjdb →
a b

i
j

dc

Represent β-function as sum of diagrams with coefficients:

β
(y)
iab → = b1

(

+

)

+ ...
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Terms in the A function are represented by completely
contracted diagrams:

A = A1 + ...

Removing a vertex gives a β-function contribution:

→

So, by equation (1), and denoting differentiation by a cross on a
vertex:

4A1 + ... = α = 2b1α + ...
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Hence, A1 = α
2 b1, and so on for each term in β(y). By explicit

calculation, α = 1
6 .

Extending to next order, the equations to solve are:

dyA(4) = dyT (2)
yȳ β

(2)
(y) + dyT (3)

yȳ β
(1)
(y)

dλA(4) = dλT (3)
λλ∗β

(1)
(λ)

Yukawa differential equation is non-trivial: 6 consistency
conditions on the 2-loop Yukawa β-function.

Expect conditions to be scheme-independent; can verify by
coupling redefinition:

δβ
(2)
I =

(

β
(1)
J

δ

δgJ

)

δgI −

(

δgJ
δ

δgJ

)

β
(1)
I
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Bonus features:

• Prediction of general 3-loop gauge β-function.

• Reduces to N = 1 Supersymmetric results via correct
coupling/field definitions.

Supersymmetric case has a potential all-orders expression for
A, will be satisfied if the following equation holds:

The Λ equation

3ȳ · Λ− 2λCR = γ − γ2 +Θ ◦ βȳ + θβ̃g

Similar loop-by-loop calculation with general anomalous
dimension γ gives consistency conditions on γ(3).
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The a-theorem in D=6

Since the Trace anomaly exists in all even dimensions, there
may exist an a-theorem formulation in all even dimensions. Test
with φ3 theory in six dimensions.
Construction of A more straightforward, since there is only one
coupling type:

gijk →

i

kj

Can still derive constraints.
To test scheme independence, use standard MS results, and
MOM results calculated by J. A. Gracey.
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1-loop β-function contains only two terms, hence lowest order A
function contains only two terms:

A(3) = A(3)
1 + A(3)

2

However... lowest order metric is negative-definite: λ = − 1
3240 .

In lower dimensions A should count "degrees of freedom"...
What is happening here?

Next order calculation including 2-loop β-function produces one
consistency condition. Can use coupling redefinitions to show
scheme independence as in 4D; explicitly verified using MS
and MOM results.

3-loop more interesting...
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3-loop gives 8 conditions on coefficients. Multiple constraints
include combination d19 + d30, last constraint has d19 − d30: not
satisfied!

Solution is a contribution to β, introduces shift
βI → BI = βI − (Sg)I:

A new contribution

Sij = θ

(

−

)

New term introduces a term proportional to θ in consistency
condition: satisfied if θ = 137

10368 . Much easier than 3-loop curved
spacetime integrals!
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The a-theorem in D=3

Preprint arXiv:1505.05400.

In D = 3, Trace anomaly vanishes (can be seen from Heat
Kernel methods and DREG).

Even if Trace anomaly were non-zero, the Euler characteristic
(hence Euler density) vanishes in odd dimensions: seems to be
no candidate for an A-function...

... or is there?



Introduction D = 4 D = 6 - with J. A. Gracey D = 3 - with D. R. T. Jones Conclusion

If one takes a D = 3 theory, e.g. Chern-Simons, ∃ an A-function
with positive-definite metric!

In 3D theories, β-functions are 0 at odd loop orders: only even
loop order terms exist. (1) expands perturbatively only using
even order terms.

Couplings are:

yijab →

i

ba

j

hijklmn →

i

n
ml

k
j

As before, Lowest order A is trivial to construct.
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At next order, can construct terms using β
(2)
h , differentiate with

respect to yijab to obtain predictions for β(4)
y : predictions are

correct.

As in other dimensions, can obtain consistency conditions from
next order Yukawa equation.

General results reduce to multiple explicit cases:

• Abelian Chern-Simons

• Non-Abelian SU(N) Chern-Simons

• Non-Abelian N = 1 SO(N) Chern-Simons

This is encouraging, but to satisfy the criteria of the A-function,
need to know A at fixed points. Even more crucially... what is
A!?
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Conclusions

4D case: holding up perturbatively for general QFTs.

• Non-trivial consistency conditions between β-function
coefficients

• Determination of higher-loop β-function coefficients from
lower orders

• All-order supersymmetric condition satisfied up to three
loops

6D case: still useful even though metric negative-definite?

• Non-trivial consistency conditions explicitly verified in two
schemes

• Contribution to 〈T µ
µ〉 at 3 loops calculated

3D case: Surprisingly able to construct A-function

• ... let’s go with "more work needed".
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