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Introduction

Introduction

Consider a renormalizable QFT with couplings g, at energy
scale p. Zamolodchikov (1986) showed:

e For 2D QFT, 3 c(u,g;) decreasing monotonically under RG
flow.

e Ata fixed point g/, c(u, ") = ¢, the central charge.
The central charge of a 2D QFT appears in the Trace anomaly:

The Trace anomaly

C
2D : (T#) = ——R
(T 12

4D : (TH) = cF — ~aG + ...




Introduction

Cardy (1988) conjectured there could be a generalization:

e For 4D QFT, 3A(u, g,) decreasing monotonically under RG
flow. (strong a-theorem)

o Atafixed point g, A(u, gf) = 1a.
o Alternatively, 3A(u,g,) such that ayy — ar > 0. (weak
a-theorem)

Jack and Osborn (1990) subsequently showed that
e For 4D QFT, 3A such that A = T3 8°.
o Atafixed point g, A(u, g) = 1a.

Hence, if G;; = T3 is positive-definite, then

d
M@A = B'aA = 'G5

that is, A monotonically decreases along RG flow.
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The key equation

dA = dg'Ty; 87 (1)

Even if G5 is not positive-definite, the existence of such an A

provides consistency conditions on the form of the g-functions
ina QFT.

So, we can expand perturbatively and solve!



The a-theorem in D=4

Published in JHEP 1501 (2015) 138.
General theory has couplings {\,y,g}. We use diagrammatic
notation, e.g. Yukawa coupling:
i
Yiab — :

a b

Summed indices represent contractions:
i
C 0
YiacYjedYjdo — 1 - >
ac d b

Represent g-function as sum of diagrams with coefficients:

By : :b1< e+ >+



D=4

Terms in the A function are represented by completely
contracted diagrams:

A= MQ {
Removing a vertex gives a S-function contribution:

/
/o !
Vo !
[ ! _
/2 — | AN
/ /
¢ N

So, by equation (1), and denoting differentiation by a cross on a
vertex:

ah N A
4A1&\/+... = av = 2b1a&\/+...



D=4

Hence, A; = 2by, and so on for each term in ). By explicit
calculation, o = .

Extending to next order, the equations to solve are:

dyA® = dyT ﬁ( +dyT ﬁ(

Yukawa differential equation is non-trivial: 6 consistency
conditions on the 2-loop Yukawa S-function.

Expect conditions to be scheme-independent; can verify by
coupling redefinition:

1) 1)
5552) = (ﬁ?@) égr — (593 50; > ()



Bonus features:
¢ Prediction of general 3-loop gauge g-function.

e Reduces to N = 1 Supersymmetric results via correct
coupling/field definitions.

Supersymmetric case has a potential all-orders expression for
A, will be satisfied if the following equation holds:

The A equation

3y -A—2)\Cr =7 —°+ 00 Fy + 064

Similar loop-by-loop calculation with general anomalous
dimension v gives consistency conditions on ~(3),



D =6 - with J. A. Gracey

The a-theorem in D=6

Since the Trace anomaly exists in all even dimensions, there
may exist an a-theorem formulation in all even dimensions. Test
with ¢ theory in six dimensions.

Construction of A more straightforward, since there is only one
coupling type:

Oijk — )\
i k

Can still derive constraints. L
To test scheme independence, use standard MS results, and
MOM results calculated by J. A. Gracey.



D =6 - with J. A. Gracey

1-loop S-function contains only two terms, hence lowest order A
function contains only two terms:

However... lowest order metric is negative-definite: A = — 1.
In lower dimensions A should count "degrees of freedom"...
What is happening here?

Next order calculation including 2-loop s-function produces one
consistency condition. Can use coupling redefinitions to show
scheme independence as in 4D; explicitly verified using MS
and MOM results.

3-loop more interesting...



D =6 - with J. A. Gracey

3-loop gives 8 conditions on coefficients. Multiple constraints
include combination d;g + d3p, last constraint has d;g — dsg: not
satisfied!

Solution is a contribution to 3, introduces shift

B — B =6 — (S9)::

A new contribution

(-]

New term introduces a term proportional to 8 in consistency

condition: satisfied if § = f£32s. Much easier than 3-loop curved

spacetime integrals!



D=3-with D. R. T. Jones

The a-theorem in D=3

Preprint arXiv:1505.05400.

In D = 3, Trace anomaly vanishes (can be seen from Heat
Kernel methods and DREG).

Even if Trace anomaly were non-zero, the Euler characteristic
(hence Euler density) vanishes in odd dimensions: seems to be
no candidate for an A-function...

... oris there?



D=3-with D. R. T. Jones

If one takes a D = 3 theory, e.g. Chern-Simons, 3 an A-function
with positive-definite metric!

In 3D theories, g-functions are 0 at odd loop orders: only even
loop order terms exist. (1) expands perturbatively only using
even order terms.

Couplings are:

ok
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As before, Lowest order A is trivial to construct.
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At next order, can construct terms using ﬁflz), differentiate with
respect to yjjap to obtain predictions for ﬁy‘): predictions are
correct.

As in other dimensions, can obtain consistency conditions from
next order Yukawa equation.
General results reduce to multiple explicit cases:

e Abelian Chern-Simons

e Non-Abelian SU(N) Chern-Simons

e Non-Abelian /' = 1 SO(N) Chern-Simons

This is encouraging, but to satisfy the criteria of the A-function,
need to know A at fixed points. Even more crucially... what is
Al?
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Conclusions

4D case: holding up perturbatively for general QFTs.

e Non-trivial consistency conditions between S-function
coefficients

e Determination of higher-loop s-function coefficients from
lower orders

o All-order supersymmetric condition satisfied up to three
loops
6D case: still useful even though metric negative-definite?

¢ Non-trivial consistency conditions explicitly verified in two
schemes

e Contribution to (T/;) at 3 loops calculated
3D case: Surprisingly able to construct A-function
e ... let’s go with "more work needed".
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