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Motivation

• The Standard Model of Particle Physics is not the ultimate
theory

• Among its shortcomings it fails to explain the several
phenomena, such as gravity, neutrino masses, dark matter,
dark energy, etc

• There must be an extension of the Standard Model that
can explain some of these observations

• We expect to see something new at the LHC in the next
run
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Motivation

• Grand Unified Theories are among the best ways to
extended the Standard Model, by enhancing its internal
symmetries

• The partial unification of gauge couplings in the SM is a
hint to a model such as this
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Motivation

• If one includes low energy Supersymmetry, at the TeV
scale, for example, the running gauge couplings is modified
in such a way that the unification is even more evident

5 10 15 20
0

10

20

30

40

50

60

log10m

a a-
1

MSSM RGEs

a1
-1

a2
-1

a3
-1

aGUT
-1

• Modulo some threshold corrections, Supersymmetric
predicts the unification scale to be at MG ∼ 2× 1016,
which incidentally is high enough to be consistent with
current bounds on proton decay.
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Motivation

• Grand Unified Theories are even motivated from the
preliminary results from the LHC experiments
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• CMS has found a peak on the pp→ lljj cross section,
maybe corresponding to a WR of around 2.2 GeV. The
signal is only about 2.8σ as of today, but it turns out to be
confirmed, it would be the first evidence for a GUT, in
particular a Left-Right symmetric model.
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Motivation

• However, the vast amount of different GUT models, with
different representations and breaking paths makes it hard
to match the phenomenology with the theory

• We argue that a tool that may take care of most of the
model building chaos, discriminating among models and
identifying those that are viable representations of reality,
will be quite useful.

• The goal will be to construct such a tool, in order to
automatise the model building process, with a minimum
set of inputs, providing different scenarios and models to
choose from.
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Motivation

• In Model Building the ultimate goal is to build a theory
that is consistent mathematically and physically.

• The starting point will be Group Theory

• We begin with a minimal set of inputs at high energies: the
Lie Group of internal symmetries and the field content.

{G, R1,R2, . . . }

• We will use group theoretical methods to build viable
models
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Motivation

• The tool will generate all possible models from that set of
inputs

1. Breaking paths from G to the Standard Model
2. Set of fields/representations at every scale

• Models will be discarded if they don’t satisfy some
constraints, e.g., reproduce the SM at low energies

Q→ (3,2)1
6
, ū→ (3̄,1)

−2
3
, d̄→ (3̄,1)1

3
,

L→ (1,2)
−1
2
, ē→ (1,1)1, (×3)

H → (1,2)
−1
2
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Review of Grand Unified Theories
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Review of GUTs

• Extend the symmetries of the Standard Model, whose
gauge group is:

GSM ≡ SU(3)c ⊗ SU(2)L ⊗ U(1)Y .

• One needs a Lie Group, of rank ≥ 4, that contains the SM
group as subgroup, G ⊃ GSM .

• The SM field content should be contained in
representations of G that satisfy the chiral structure and
don’t generate anomalies.∑

R

A(R) = 0 (1)
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Review of GUTs

• H. Georgi and S. Glashow proposed in 1974 the first unified
model, using the simple group SU(5).

• The SM matter field content is embedded univocally in two
representations of SU(5), 10F and 5̄F , in the following
way:

10F ≡


0 uc3 −uc2 u1 d1
−uc3 0 uc1 u2 d2
uc2 −uc1 0 u3 d3
−u1 −u2 −u3 0 ec

−d1 −d2 −d3 −ec 0

 , 5̄F ≡


dc1
dc2
dc3
e
−ν


• And the Higgs field falls into the representation 5H ,

together with a colour triplet.
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Review of GUTs

• The SU(5) model is that predicts the precise charge
quantisation present in the Standard Model.

Y (Q)
Y (ec) = 1

6 ,
Y (uc)
Y (ec) = −2

3 ,
Y (dc)
Y (ec) = 1

3 ,
Y (L)
Y (ec) = −1

2 .

• Breaking of SU(5)→ GSM happens when the
24-dimensional representation acquires a vacuum
expectation value.

• It requires precise gauge coupling unification, g3 = g2 = g1,
at a scale MG, which does not happen exactly in the SM.

• Yukawa coupling unification is needed as well, but it does
not predict the right fermion masses at the renormalizable
level.
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Review of GUTs

• Non-SUSY SU(5) predicts rapid proton decay, which
happens through the off-diagonal gauge bosons, X,

Γ(p→ π0e+) ∼ α2m5
p

M4
X
, τexp > 1034 years.

• Supersymmetric SU(5) improves the unification of gauge
couplings, to happen precisely at MG = 2× 1016, and
requires an extra Higgs representation, 5̄H . It is also
compatible with proton decay.

• A successful non-supersymmetric model for SU(5) can be
built, by enhancing the symmetry to SU(5)⊗ U(1), and
taken the ”flipped” embedding.

uci ↔ dci , ec ↔ νc, 1F ≡ (ec).
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Review of GUTs

• Next attempt for an unified model was by J. Pati and A.
Salam, shortly after. It involved the semi-simple group
SU(4)c ⊗ SU(2)L ⊗ SU(2)R.

• The SM field content is embedded in (4,2,1) and (4̄,1,2).

(4,2,1) ≡
(
u1 u2 u3 ν
d1 d2 d3 e

)
,

(4̄,1,2) ≡
(

dc1 dc2 dc3 ec

−uc1 −uc2 −uc3 −νc
)
.

• And the SM Higgs is a bi-doublet (1,2,2).
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Review of GUTs

• Breaking to the SM can happen in different steps, through
one or more intermediate groups

SU(4)c ⊗ SU(2)L ⊗ U(1)R,

SU(3)c ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L.

SU(3)c ⊗ SU(2)L ⊗ U(1)R ⊗ U(1)B−L.

• The Higgs sector includes fields in the representations
(1̄0,3,1) and (1̄0,1,3), and the order in which the acquire
v.e.v.s determines the breaking path.
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Review of GUTs

• This model naturally includes the right-handed neutrino in
the content, which requires some sort of Seesaw Mechanism
to explain the hierarchy.

Mν =

(
0 mD

mD MR

)
→

{
mν ∼

m2
D

MR

mνc ∼MR

• There are three (two) different gauge couplings, so strict
unification is not required, and thus this model can be
satisfied in the non-supersymmetric scenario.

• Neither the gauge or scalar sectors induce proton decay, so
it is possible to have some light states (& TeV), maybe
within reach of the LHC.
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Review of GUTs

• The first model to have all the SM fermions unified in a
single representation is SO(10) unification (H. Fritsch and
P. Minkowski, 1975).

• The spinor representation, 16 is not self conjugate, so it
respects the SM chiral structure. A particular choice for
the Clifford algebra gives the embedding

16F ≡ {u1, ν, u2, u3, νc, uc1, uc3, uc2, d1, e, d2, d3, ec, dc1, dc3, dc2}

• The SM Higgs doublet (or both MSSM Higgs doublets) can
be embedded in the 10H representation, although an
accurate prediction for fermion masses requires the
addition of higher dimensional representations such as
120H or 126H .
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Review of GUTs

• SO(10) contains maximally the subgroups SU(5)⊗ U(1)
and SU(4)⊗ SU(2)⊗ SU(2), so it favour from the
advantages of both previous models.

• It can break directly to the SM, or through either of the
maximal subgroups as intermediate steps.
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Review of GUTs

• Another family unified group is E6, which contains in it
fundamental representation, 27, all the SM matter content,
plus some Higgs multiplets and a singlet

• E6 has the maximal subgroup SO(10)× U(1), under which
the 27 representation decomposes as

27→ 161 ⊕ 10−2 ⊕ 14

• There is an alternative, and also quite interesting,
embedding of the SM into E6, which is through the
subgroup SU(3)c × SU(3)× SU(3)w. And 27 decomposes
as

27→ (3,1,3)⊕ (3̄, 3̄,1)⊕ (1,3, 3̄)
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Overview of Group Theory
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Overwiew of Group Theory

• The Cartan Classification of (compact) Lie Groups:

An ↔ SU(n+ 1), Bn ↔ SO(2n+ 1),

Cn ↔ Sp(2n), Dn ↔ SO(2n),

G2, F4, E6, E7, E8.

• Let ta be the generators of the Lie algebra associated with
the Lie group. Then the Lie algebra is univocally defined
by the structure constants fabc.

[ta, tb] = fabc tc

• An has n(n+ 2) generators, Bn and Cn have n(2n+ 1), Dn

has n(2n− 1) and the exceptional algebras, G2, F4, E6, E7

and E8 have 14, 52, 78, 133 and 248 respectively.
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Overview of Group Theory

• If we call hi the maximal set of commuting generators,
called the Cartan subalgebra, of size n, the rank of the
group, such that

[hi, hj ] = 0, ∀i, j

• Let eα be the other generators, with e−α ≡ e†α and

[hi, eα] = αi eα

• The roots α define the algebra. The minimum set of
linearly independent roots, known as the simple roots, has
size n and contains only positive roots.

• The last commutation relations are

[eα, e−α] = αihi, [eα, eβ] = cα,β eα+β if α+ β 6= 0
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Overview of Group Theory

• The Cartan matrix (standard normalisation, α · α = 2),
e.g., A2

K(A2) =

(
2 −1
−1 2

)
• The simple roots can be represented using Dynkin

diagrams

• The dots represent the roots, black dots are shorter roots
• The links represent the angle between roots

• 0 links → ∠{α, β} = π
2

• 1 link → ∠{α, β} = 2π
3

• 2 links → ∠{α, β} = 3π
4

• 3 links → ∠{α, β} = 5π
6

24



Overview of Group Theory

• The Dynkin diagrams for all simple groups are
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Overview of Group Theory

• An n-dimensional Representation of the group is a set of
n× n matrices that act on an n-dimensional Hilbert space

• They satisfy the same commutation relations as the
generators ta.

[R(ta),R(tb)] = fabcR(tc)

• The weights of the representation are the eigenvalues of
the generators of the Cartan subalgebra on such Hilbert
space

R(hi)|λ〉 = wi|λ〉
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Overview of Group Theory

• There is a |λ〉 such that R(eα)|λ〉 = 0 for all the simple
roots α. Its weight is the highest weight and defines the
representation, e.g.

w = (1, 1)↔ 8 ∈ SU(3)

• From the highest weight all weights can be obtain using
R(e−α), we obtain the weight diagram, e.g.

(1, 1)
(2,−1) (0, 0) (−2, 1)
(−1, 2) (0, 0) (1,−2)

(−1,−1)
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Overview of Group Theory

• Roots define Simple Groups
• A root system can be represented by a Dynkin Diagram
• Non-simple groups are defined by the roots of its factors

• Weights define Representations
• From the highest weight the Weight Diagram can be

obtained
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Model Building: Groups and Representations
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Model Building: Groups and Reps

• Three main concepts from group theory:

1. Direct products of representations → invariants
e.g. SU(5),

5⊗ 5̄ = 24⊕ 1

2. Subgroups of a group → breaking chains
e.g.

E6 → SO(10)→ SU(5)→ SU(3)c × SU(2)L × U(1)Y

3. Decomposition of the representations → field content
e.g. SO(10)→ SU(5)× U(1)

16→ 10−1 ⊕ 5̄3 ⊕ 1−5
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Model Building: Groups and Reps

• The first case, the direct product of representations,

R1 ⊗R2 =
⊕
i

Ri

• Take each weight wi from R1 and each vj from R2

• The reducible representation R1 ⊗R2 has weights wi + vj .

• Pick the highest weight from wH ∈ wi + vj (most positive)
that identifies a irrep

• Construct the weight diagram for wH and take out those
weights from wi + vj

• Repeat until there is no more positive weights, leftovers
will be (0, 0), i.e., singlets
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Model Building: Groups and Reps

• An example, in SU(3), 3⊗ 3̄

(1, 0) (0, 1) (1, 1)(2,−1)(0, 0)
(−1, 1) ⊗ (1,−1) = (−1, 2)(0, 0)(−2, 1)
(0,−1) (−1, 0) (0, 0)(1,−2)(−1,−1)

• The weight diagram obtained from (1, 1), of dimension 8, is

(1, 1)
(2,−1) (0, 0) (−2, 1)
(−1, 2) (0, 0) (1,−2)

(−1,−1)

• The weight (0, 0) is just the singlet in SU(3), 1

• So the result is
3⊗ 3̄ = 8⊕ 1
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Model Building: Groups and Reps

• Three main concepts from group theory:
1. Direct products of representations → invariants

e.g. SU(5),
5⊗ 5̄ = 24⊕ 1

2. Subgroups of a group → breaking chains
e.g.

E6 → SO(10)→ SU(5)→ SU(3)c × SU(2)L × U(1)Y

3. Decomposition of the representations → field content
e.g. SO(10)→ SU(5)× U(1)

16→ 10−1 ⊕ 5̄3 ⊕ 1−5
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Model Building: Groups and Reps

• The maximal subgroups of a given group are of two types:
Regular Subgroups and Special Subgroups.

• The Regular maximal subgroups can be calculated
simply by removing a dot from the Dynkin diagram or the
Extended Dynkin diagram.
e.g.

SU(5)→ SU(3)× SU(2)× U(1)

• The Special maximal subgroups must be obtained in a
more heuristic way, by finding a group F < G for which
there exists the decomposition R(G)→ R(F), e.g.,

7(SO(7))→ 7(G2)
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Model Building: Groups and Reps

• The Regular maximal subgroups can be either
semisimple or not, and the way of obtaining either is
different

• Given the Dynkin diagram for a group, a non-semisimple
subgroup can be obtained by simply eliminating a dot from
the diagram

• The resulting disconnect diagrams correspond to the
semi-simple part of the subgroup and the eliminated dot
becomes the U(1) generator.
e.g. SU(5)→ SU(3)× SU(2)× U(1)
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Model Building: Groups and Reps

• The semisimple groups are obtained by adding a root to
the Dynkin diagram, to form the Extended or Affine
Dynkin Diagram. This root, −γ, is the most negative
root of the group, e.g. for Bn.

• For the example case B3 → A1 ×A1 ×A1, eliminating the
dot in the middle
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Model Building: Groups and Reps

• Through this procedure one can obtain all maximal
subgroups of a given Lie Group

• To obtain all subgroups, one needs to iterate the procedure
for the subgroups. This way the subgroups of SU(5) are

SU(5) ⊃SU(4)× U(1),

SU(3)× SU(2)× U(1),

SU(3)× U(1)× U(1)∗,

SU(2)× SU(2)× U(1)× U(1)∗,

SU(2)× U(1)× U(1)× U(1)∗,

U(1)× U(1)× U(1)× U(1)∗.

* this subgroup is embedded into SU(5) in more than one way
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Model Building: Groups and Reps

• The final step while calculating the subgroups is the
breaking of the abelian factors.

• Whenever there is more than one copy of U(1) the broken
generator is a linear combination of the both generators,
e.g. Y = I3R + B−L

2

SU(3)c×SU(2)L×U(1)R×U(1)B−L → SU(3)c×SU(2)L×U(1)Y

• Then, for the SU(5) example above, include the subgroups

SU(5) ⊃SU(4), SU(3)× SU(2)∗, SU(3)× U(1)∗,

SU(3)∗, SU(2)× SU(2)× U(1)∗,

SU(2)× SU(2)∗, SU(2)× U(1)∗, SU(2)∗

U(1)× U(1)× U(1)∗, U(1)× U(1)∗, U(1)∗
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Model Building: Groups and Reps

• Breaking chains
e.g., SU(5)× U(1)→ SU(3)× SU(2)× U(1)
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Model Building: Groups and Reps
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Model Building: Groups and Reps

• The Projection Matrix projects the weights of a
representation into weights of representations of the
subgroup

P ·W = W ′

• e.g. the decomposition of the 5 ∈ SU(5) into irreps of
SU(3)× SU(2)× U(1)


1 0 0 0
0 1 0 0
0 0 0 1
1
3

2
3

1 1
2

 ·


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1

 =


1 − 1 0 0 0
0 1 − 1 0 0
0 0 0 1 − 1
1
3

1
3

1
3

− 1
2

− 1
2



• So the decomposition goes: 5→
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1
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1
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• So the decomposition goes: 5→ (3,1)1
3
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• So the decomposition goes: 5→ (3,1)1
3
⊕ (1,2)

−1
2
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Model Building: Groups and Reps

• The projection matrices are calculated at the time of
obtaining the subgroups

• For non-semisimple subgroups, simply move the element
of weights corresponding to the eliminated dot to the end
and substitute every element by the dual of the weight it
belongs to

W =


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1

 , W
′
=


1 −1 0 0 0
0 1 −1 0 0
0 0 0 1 −1
1
3

1
3

1
3

− 1
2
− 1

2



• And thus P = W ′ ·W−1, where W−1 is the pseudoinverse
of W , and we obtain the projection matrix from before

P =


1 0 0 0
0 1 0 0
0 0 0 1
1
3

2
3

1 1
2
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Model Building: Groups and Reps
• In the case of semisimple subgroups, add an element to

every weight corresponding to the product α · γ, and then
remove an element of every weight corresponding to the
eliminated dot in the diagram

• e.g, for the case of SO(7), the generating rep is the 8,
whose weight matrix is

W =

0 0 1 −1 1 −1 0 0
0 1 −1 0 0 1 −1 0
1 −1 1 1 −1 −1 1 −1


• Now, adding the extended root, −γ, and dropping the

second dot, to give SU(2)× SU(2)× SU(2)

W
′
=

 0 0 1 −1 1 −1 0 0
−1 −1 0 0 0 0 1 1
1 −1 1 1 −1 −1 1 −1


• Which can be identified as 8 = (2,1,2)⊕ (1,2,2), and

P = W
′ ·W−1

=

 1 0 0
−1 −2 −1
0 0 1
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Model Building: Theories and Models
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Model Building: Theories and Models

• In order to build a model, we start with the minimal inputs

{G, R1,R2 . . . }

• We obtain the breaking chains of G to the SM

G → G1 → G2 → · · · → Gn → GSM

• For all possible chains, we choose one path and we build all
possible model that spawn from it and check their viability.

• One can iterate over all possible breaking chains to
consider all models given by the pair Group + Reps.
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Model Building: Theories and Models

• For a particular path, we can define a Theory as a set
containing a Lie Group, a list of Reps of the group and a
Breaking Chain, e.g.

{G = SU(5)× U(1),

R = 10−1 ⊕ 5̄3 ⊕ 52,

SU(5)× U(1)→ SU(3)× SU(2)× U(1)}

• We define then a Model as a list of Theories, one per step
on the breaking chain, e.g.


G = SU(5)× U(1), G = SU(3)× SU(2)× U(1),
R = 10−1 ⊕ 5̄3 ⊕ 52, R = (3, 2) 1

6
⊕ (3̄, 1)

− 2
3
⊕ (3̄, 1) 1

3
⊕

SU(5)× U(1)→ (1, 2)
− 1

2
⊕ (1, 1)1 ⊕ (1, 2) 1

2
⊕ (3, 1)

− 1
3

→ SU(3)× SU(2)× U(1) SU(3)× SU(2)× U(1)→ {}
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Model Building: Theories and Models
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R = 10−1 ⊕ 5̄3 ⊕ 52,

SU(5)× U(1)→ SU(3)× SU(2)× U(1)}

• We define then a Model as a list of Theories, one per step
on the breaking chain, e.g.


G = SU(5)× U(1), G = SU(3)× SU(2)× U(1),
R = 10−1 ⊕ 5̄3 ⊕ 52, × 3 R = (3, 2) 1

6
⊕ (3̄, 1)

− 2
3
⊕ (3̄, 1) 1

3
⊕ × 3

SU(5)× U(1)→ (1, 2)
− 1

2
⊕ (1, 1)1 ⊕ (1, 2) 1

2
⊕ (3, 1)

− 1
3

→ SU(3)× SU(2)× U(1) SU(3)× SU(2)× U(1)→ {}
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Model Building: Theories and Models
• Not every model will be a successful model
• One needs to impose a set of constraints

1. Anomaly free and must satisfy charge conservation∑
i

A(Ri) = 0,
∑
i

Q(Ri) = 0

2. Symmetry breaking required by the chain must happen

H → (1,2)
− 1

2

(
H2 → (1,2) 1

2

)
3. The field content at the lowest step should be the

Standard Model field content (singlets)

Q→ (3,2) 1
6
, ū→ (3̄,1)

− 2
3
, d̄→ (3̄,1) 1

3
,

L→ (1,2)
− 1

2
, ē→ (1,1)1, (×3)

4. Chirality must be satisfied
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Model Building: Theories and Models

• To make sure that only the SM survives at the EW
scale, one needs to integrate out any exotic field content at
higher energies

• As a requirement for symmetry breaking, all gauge boson
are assumed to acquire masses of the order of the
symmetry at which they decouple MX ∼ v

• Keeping the SM field content aside, we will generate all the
possible models where the exotic fields are integrated out
at the different scales of the model

• For every such model, we will check for the constraints
above to classify it as valid or not

48



Model Building: Theories and Models

• Gauge Anomalies arise whenever one-loop triangle
diagrams do not cancel

Tr{taR, tbR}tcR = A(R)dabc

• In general, only SU(N), N ≥ 3 and E6 suffer from this
anomalies. For those cases, the field content must be such
that makes the theory anomaly free, using the properties

A(R1⊕R2) = A(R1)+A(R2), A(R̄) = −A(R), A(1) = 0

• e.g. for the case of SU(5), it turns out that A(10⊕ 5̄) = 0,
so the matter field content is anomaly free
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Model Building: Theories and Models

• Anomaly cancellation in the case of U(1) implies charge
conservation, which means that for every abelian factor
U(1)j , one needs that∑

i

Qj(Ri) = 0

where Q are the U(1) charges, weighted by d(Ri).
• Thus, for the SU(5)× U(1) model above, one needs to add

an extra 1−5, for this to happen

• The last anomaly is the Witten anomaly, with has to do
with the topology of SU(2), and its avoided whenever there
is an even number of SU(2) fermion doublets, as in the SM
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Model Building: Theories and Models

• Spontaneous symmetry breaking from one step of the
chain to another must happen whenever a scalar field gets
a vacuum expectation value

• At this stage we do not worry about the scalar potential,
we assume that if such field exists, there is a suitable
potential that is unstable at φ = 0 at some breaking scale

∂V

∂φ

∣∣∣∣
φ=v

= 0,
∂2V

∂φ2

∣∣∣∣
φ=v

> 0, 〈φ〉 = v 6= 0

• We then impose that in order to break G → F , there must
be a non-singlet field φ ∈ G that contains a singlet when
decomposed under F , 1 ∈ φ|F
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Model Building: Theories and Models

• At every step, we check that there is one such field φ, and
if so, we only keep the model that integrates out the singlet
component at that step

• The rest of the components of φ may be integrated out or
not, there could be mass splitting among components

• For the case of SU(5)× U(1)→ SU(3)× SU(2)× U(1),
one could add φ→ 24X , with X 6= 0, which decomposes

24X → (8,1)X ⊕ (1,3)X ⊕ (3,2)X+1 ⊕ (3̄,2)X−1 ⊕ (1,1)X

• So adding that representation to the field content and
giving a v.e.v. to the singlet component would trigger the
symmetry breaking
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Model Building: Theories and Models

• With all this, one can make a realistic model from the
example above



G = SU(5)× U(1), G = SU(3)× SU(2)× U(1),
R = 10−1 ⊕ 5̄3 ⊕ 52, × 3 R = (3, 2) 1

6
⊕ (3̄, 1)

− 2
3
⊕ (3̄, 1) 1

3
⊕ × 3

(1, 2)
− 1

2
⊕ (1, 1)1 ⊕ (1, 2) 1

2
⊕ (3, 1)

− 1
3

SU(5)× U(1)→
→ SU(3)× SU(2)× U(1) SU(3)× SU(2)× U(1)→ {}



• Include 3 generations of matter fields to reproduce the SM
field content

• Add a singlet, 1−5 to ensure charge quantisation, and a
fiveplet, 5̄−2 for anomaly cancellation

• Add a scalar 24X to ensure symmetry breaking

• Integrate out all exotic fields (except maybe the singlet)
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6
⊕ (3̄, 1)

− 2
3
⊕ (3̄, 1) 1

3
⊕ × 3

1−5 ⊕ 5̄−2 (1, 2)
− 1

2
⊕ (1, 1)1 ⊕ (1, 2) 1

2
⊕ (3, 1)

− 1
3

SU(5)× U(1)→ (1, 1)0 ⊕ (3̄, 1) 1
3
⊕ (1, 2)

− 1
2
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Model Building: Theories and Models

• With all this, one can make a realistic model from the
example above



G = SU(5)× U(1), G = SU(3)× SU(2)× U(1),
R = 10−1 ⊕ 5̄3 ⊕ 52⊕, × 3 R = (3, 2) 1

6
⊕ (3̄, 1)

− 2
3
⊕ (3̄, 1) 1

3
⊕ × 3

1−5 ⊕ 5̄−2 ⊕ 24X (1, 2)
− 1

2
⊕ (1, 1)1 ⊕ (1, 2) 1

2
⊕ (3, 1)

− 1
3

SU(5)× U(1)→ (1, 1)0 ⊕ (3̄, 1) 1
3
⊕ (1, 2)

− 1
2
⊕ . . .

→ SU(3)× SU(2)× U(1) SU(3)× SU(2)× U(1)→ {}


• Include 3 generations of matter fields to reproduce the SM

field content

• Add a singlet, 1−5 to ensure charge quantisation, and a
fiveplet, 5̄−2 for anomaly cancellation

• Add a scalar 24X to ensure symmetry breaking

• Integrate out all exotic fields (except maybe the singlet)
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6
⊕ (3̄, 1)

− 2
3
⊕ (3̄, 1) 1

3
⊕ × 3

1−5 ⊕ 5̄−2 ⊕ 24X (1, 2)
− 1

2
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2
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− 1
3
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• Integrate out all exotic fields (except maybe the singlet)
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Model Building: Theories and Models
• To summarise, the process of generating models goes like

this
1. First, given a theory, calculate the full model, with all

irreps at all scales
2. Start at the second-to-highest scale
3. Generate of possible combinations of non-SM

representations, including the case with all of them and the
case with none

4. For every combination, create the corresponding model
5. Check if the model is valid with respect to the constraints
6. If the model is valid, move to the next scale, and go back

to step 3
7. If at the low scale any of the constraints are not satisfied

it will feed back to the high scale and exclude that model

• In the end, we will have a list of models that satisfy
all the imposed constraints
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Conclusions and Applications
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Conclusions and Applications

• A result of the model building tool is the RGE running
of the gauge couplings (at one-loop level)

• At every step they only depend on group parameters, such
as the Casimir of the group and the Dynkin Index of
the representations involved,

βga = (
∑

i I(Ri)− 3C(Ga))g3a, SUSY
βga = (23

∑
i∈F I(Fi) + 1

3

∑
i∈S I(Si)− 11

3 C(Ga))g
3
a Non-SUSY

• With the SM gauge couplings as the low energy fixed
points, the running of the couplings and the intermediate
scales can be obtained by satisfying the relevant boundary
conditions
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Conclusions and Applications

• Applications of this include both Supersymmetric and
Non-Supersymmetric Grand Unified Models

• It can potentially deal with models in which
Supersymmetry breaking happens at any scale, since
the effect would be to integrate out the Supersymmetric
partners at the scale of SUSY breaking

• Three example cases of model are given

1. A minimal Supersymmetric SO(10) model, with
minimal Higgs content and direct breaking to the
Standard Model

2. A non-supersymmetric, SO(10) inspired, left-right
symmetry model

3. A model of GUT scale, hybrid inflation, with an
SU(5)× U(1) intermediate waterfall breaking
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Conclusions and Applications

• Minimal Supersymmetric SO(10) model



G = SO(10), G = SU(3)× SU(2)× U(1),
R = 16⊕ 16⊕ 16⊕ 10⊕ 144 R = (3, 2) 1

6
⊕ (3̄, 1)

− 2
3
⊕ (3̄, 1) 1

3
⊕ } × 3

(1, 2)
− 1

2
⊕ (1, 1)1⊕ } × 3

(1, 2) 1
2
⊕ (1, 2)

− 1
2

SO(10)→ SU(3)× SU(2)× U(1) SU(3)× SU(2)× U(1)→ {}
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Conclusions and Applications

• Non-SUSY Left-Right Symmetry model

SO(10)→ SU(4)× SU(2)× SU(2)×D → SU(4)× SU(2)× SU(2)

→ SU(3)× SU(2)× SU(2)× U(1)→ SU(3)× SU(2)× U(1)× U(1)

→ SU(3)× SU(2)× U(1)
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F.Deppisch, T.G., S.Patra, N.Sahu, U.Sarkar [Phys. Rev. D 90, 053014]
F.Deppisch, T.G., S.Patra, N.Sahu, U.Sarkar [pending publication]
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Conclusions and Applications

• GUT scale, hybrid inflation, with an SU(5)× U(1)
intermediate waterfall breaking

163
F ,16H , 1̄6H ,45H ,45H ,10H

SO(10)× U(1)→ SU(5)× U(1)→ SU(3)× SU(2)× U(1)

J.Ellis, T.G., J. Harz, W-C.Huang [in progress]
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Thank you!
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Backup

• Properties of groups

• Metric of the group

Gij = K−1ij
(αj , αj)

2

• Product of roots

(α, β) =
∑
i,j

αiGijβj

• Dual of a root
α∗i = Gijαj
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Backup

• Properties of representations

• Dimension of an irrep

d(R) =
∏
α

α · (Λ + δ)

α · δ

where Λ is the highest weight of the irrep.

• The Casimir of a representation is defined as

C(R) = Trtata = Λ · (Λ + 2δ)

• And the Dynkin Index of the representation

I(R) =
d(R)

d(G)
C(R)
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Backup

• Extended Dynkin diagrams
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Backup

• Definition of pseudo inverse

• For a non-square matrix, n×m, A the pseudo inverse can
be define such that

Ã−1 ≡ AT · (A ·AT )−1

so that
A · Ã−1 = In
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