A 3.5 keV Photon Line from a 3.5 keV ALP Line

Markus Rummel, University of Oxford Seminar, University of Liverpool 19/11/2014

- "A 3.55 keV Photon Line and its Morphology from a 3.55 keV ALP Line", Michele Cicoli, Joseph Conlon and David Marsh, MR arXiv:1403.2370, Phys.Rev. D90 023540
- "3.55 keV photon lines from axion to photon conversion in the Milky Way and M31", Francesca Day and Joseph Conlon, arXiv:1404.7741
- "A 3.55 keV line from $DM \rightarrow a \rightarrow \gamma$: predictions for cool-core and non-cool-core clusters", Andrew Powell and Joseph Conlon, arXiv:1406.5518
- "Observational consistency and future predictions for a 3.5 keV ALP to photon line", Pedro Alvarez, Joseph Conlon, Francesca Day and David Marsh, MR, arXiv:1410.1867

Outline

- I. Summary of 3.5 keV observations
- **2.** The model: $DM \rightarrow a \rightarrow \gamma$
- **3.** DM $\rightarrow a \rightarrow \gamma$ vs DM $\rightarrow \gamma$ morphology
- 4. A Cosmic Axion Background

Timeline of observational evidence

2014

- Feb Bulbul et al.: Det. in stacked cluster (XMM, Chandra)
 - Boyarsky et al.: Det. in Perseus & M31 (XMM)
- May

 Riemer-Sørensen: No Det. in MW (Chandra)
- Aug Jeltema et al.: Det. in GC, no det. in M31 (XMM)
 - Boyarsky et al.: Comment on M31
 - Bulbul et al.: Comment on atomic lines
 - Boyarsky et al.: Det. in GC (XMM)
 - Malyshev et al.: No det. in dwarfs (XMM)
 - Anderson et al.: No det. in spirals (XMM, Chandra)

Timeline of observational evidence

2014

- Nov Urban et al.: Det. in Perseus (Suzaku)
 - Carlson, Jeltema, Profumo: Morphology of signal in Perseus and GC (XMM)
 - Jeltema Profumo: Reply to comments of Bulbul et al. and Boyarsky et al.

The stacked cluster analysis

[Bulbul, Markevitch, Foster, Smith, Loewenstein, Randall '14(Feb)]

- Stacked data of 73 galaxy clusters (0.01 < z < 0.4) yielding ~ 8 Ms of XMM observation time
- Blue-shifted to cluster rest frame
- Detected independently in XMM-Newton PN and MOS instruments at 4-5 sigma
- Detected in all three subsamples (Perseus also with Chandra, Coma+Ophiuchus+Centaurus, all others)

The observed line

[Bulbul, Markevitch, Foster, Smith, Loewenstein, Randall '14(Feb)]

The observed line

[Bulbul, Markevitch, Foster, Smith, Loewenstein, Randall '14(Feb)]

The Boyarsky et al. analysis

[Boyarsky, Ruchayskiy, lakubovskyi, Franse 'I4(Feb)]

Detected in Perseus Cluster (0.7 Ms) and Andromeda (M31) galaxy (2.5 Ms) with XMM-Newton MOS data

The galactic center

No detection with Chandra (750 ks): [Riemer-Sørensen '14 (Aug)]

Element	Energy	Strength	Strength per arcmin^2
	(keV)	$(\rm ph cm^{-2} s^{-1})$	$(ph arcmin^{-2} cm^{-2} s^{-1})$
95 % Upper bound	3.55 keV	$\lesssim 5 \times 10^{-6}$	$\lesssim 2.1 \times 10^{-8}$
K XVIII	3.48	2.2×10^{-6}	9.2×10^{-9}
K XVIII	3.52	4.2×10^{-6}	1.8×10^{-8}
Ar XVII	3.62	4.2×10^{-6}	1.8×10^{-8}

But detection with XMM (~2 Ms):

Detector	Energy	Strength	Strength per arcmin^2
	(keV)	$(\rm ph cm^{-2} s^{-1})$	$(ph arcmin^{-2} cm^{-2} s^{-1})$
XMM MOS [4]	3.5	4.1×10^{-5}	7.7×10^{-8}
XMM PN [4]	3.5	2.8×10^{-5}	5.3×10^{-8}
XMM [5]	3.53	$(2.9 \pm 0.5) \times 10^{-5}$	$(5.5 \pm 0.9) \times 10^{-8}$

[4] Jeltema, Profumo '14 (Aug), [5] Boyarsky, Ruchayskiy, lakubovskyi, Franse '14 (Aug)

The galactic center

- Atomic composition of GC more complicated (multi-phase and multi temperature)
- Potassium line cannot be excluded

Dwarf spheroidal galaxies

[Malyshev, Neronov, Eckert '14(Aug)]

- Stacked XMM data of 8 dwarfs analyzed (~ 0.6 Ms)
- high mass to light ratio
- not a source of thermal X-ray emission

\Rightarrow **No detection:** Exclusion of Dark matter origin of 3.5 keV line at only ~ 2 sigma

Stacked galaxy spectra

[Anderson, Churazov, Bregman '14(Aug)]

- 89 galaxies (XMM, 14.6 Ms) and 81 galaxies (Chandra, 15 Ms) with $kT \lesssim 1~{
 m keV}$
- dark matter masses via virial radius
- instrumental background is not modeled and substracted but fitted with smoothing spline

⇒ No detection: Exclusion of dark matter origin at 4.4 sigma (Chandra), 11.8(!) sigma (XMM)

Suzaku: Perseus and nearby cluster

[Urban, Werner, Allen, Simionescu, Kaastra, Strigari '14(Nov)]

- Detected in Perseus (740 ks): Flux & Energy broadly consistent with Bulbul et al. and Boyarsky et al.
- Not detected in Coma (164 ks), Virgo (90 ks) and Ophiuchus (83 ks)

Morphology in Perseus and GC

- Both morphologies seem inconsistent with dark matter decay to photons
- Caution: low count rates

A 3.5 keV Photon Line from a 3.5 keV ALP Line

[Carlson, Jeltema, Profumo '14(Nov)]

Markus Rummel 15 / 50

Possible origins of the line

Instrumental effect?

- Seen by 5 different detectors (2 XMM, 2 Chandra, Suzaku)
- ≥ De-redshifting of clusters leaves line at 3.55 keV
- X Not seen in blanck sky survey (16 Ms)

Possible origins of the line

Instrumental effect?

- Seen by 5 different detectors (2 XMM, 2 Chandra, Suzaku)
- ≥ De-redshifting of clusters leaves line at 3.55 keV
 - X Not seen in blanck sky survey (16 Ms)

Atomic line?

No known atomic line at this energy. Apart from known lines exceeding expectation by factor ~20

Line also detected in Andromeda (no hot gas!)

Possible origins of the line

Dark matter decay/annihilation?

Sterile neutrinos (compatible with previous bounds)

$$\Gamma_{\gamma}(m_s, \theta) = 1.38 \times 10^{-29} \text{ s}^{-1} \left(\frac{\sin^2 2\theta}{10^{-7}}\right) \left(\frac{m_s}{1 \text{ keV}}\right)^5$$

 ALP (Axion Like Particle) DM, Axinos, excited states of DM, Gravitinos, ...

[Bulbul, Markevitch, Foster, Smith, Loewenstein, Randall;
Czerny, Hamaguchi, Higaki, Ibe, Ishida, Jeong, Nakayama, Takahashi, Yanagida, Yokozaki;
Jaeckel, Redondo, Ringwald; El Asiati, Hambye, Scarna;
Dudas, Heurtier, Mambrini; Bomark, Roszkowski; Frandsen, Sannino, Shoemaker, Svendsen;
Kolda, Unwin; Finkbeiner, Weiler; Kubo, Lim, Lindner; Choi, Seta; Baek, Okada, Toma;
Lee, Park, Park; Chen, Liu, Nath; Ishida, Okada; Geng, Huang, Tsai; Chiang, Yamada;
Dutta, Gogoladze, Khalid, Shafi; Rodejohann, Zhang; Cline, Frey;
Henning, Kehayias, Murayama, Pinner, Yanagida; Boddy, Feng, Kaplinghat, Shadmi, Tait;
Falkowski, Hochberg, Ruderman; Schutz, Slatyer; Cheung, Huang, Tsai]

- II.8 sigma inconsistency from stacked galaxy spectra [Anderson, Churazov, Bregman 'I4(Aug)]
- Non-detection in dwarf spheroidals [Malyshev, Neronov, Eckert '14(Aug)]

 Galactic center: Non-detection with Chandra but detection with XMM, (morphology does not fit)
 [Riemer-Sørensen '14 (Aug)], [Jeltema, Profumo '14 (Aug)],

[Boyarsky, Ruchayskiy, lakubovskyi, Franse '14 (Aug)], [Carlson, Jeltema, Profumo '14 (Nov)]

XMM-Newton MOS:

[Bulbul, Markevitch, Foster, Smith, Loewenstein, Randall '14]

	Full Sample (73 cluster)	Coma +Centaurus +Ophiuchus	Perseus (without core)	Perseus (with core)
$ \sin^2(2\theta) \\ (10^{-11}) $	$6.8^{+1.4}_{-1.4}$	$18.2^{+4.4}_{-3.9}$	$23.3^{+7.6}_{-6.9}$	$55.3^{+25.5}_{-15.9}$

XMM-Newton MOS:

[Bulbul, Markevitch, Foster, Smith, Loewenstein, Randall '14]

	Full Sample (73 cluster)	Coma +Centaurus +Ophiuchus	Perseus (without core)	Perseus (with core)
$ \sin^2(2\theta) \\ (10^{-11}) $	$6.8^{+1.4}_{-1.4}$	$18.2^{+4.4}_{-3.9}$	$23.3^{+7.6}_{-6.9}$	$55.3^{+25.5}_{-15.9}$

- Signal in Perseus ~8 times stronger than in full sample
- Half of the Perseus Signal is within the central 20 kpc but $R_{DM}\simeq 360~{
 m kpc}$
- \Rightarrow Dark matter to photon may not fit the morphology

XMM-Newton MOS:

[Bulbul, Markevitch, Foster, Smith, Loewenstein, Randall '14]

- Signal in Perseus ~8 times stronger than in full sample
- Half of the Perseus Signal is within the central 20 kpc but $R_{DM} \simeq 360 \ {\rm kpc}$
- \Rightarrow Dark matter to photon may not fit the morphology

XMM-Newton MOS:

[Bulbul, Markevitch, Foster, Smith, Loewenstein, Randall '14]

	Full Sample (73 cluster)	Coma +Centaurus +Ophiuchus	Perseus (without core)	Perseus (with core)
$ \sin^2(2\theta) \\ (10^{-11}) $	$6.8^{+1.4}_{-1.4}$	$18.2^{+4.4}_{-3.9}$	$23.3^{+7.6}_{-6.9}$	$55.3^{+25.5}_{-15.9}$

- Signal in Perseus ~8 times stronger than in full sample
- Half of the Perseus Signal is within the central 20 kpc but $R_{DM}\simeq 360~{
 m kpc}$
- \Rightarrow Dark matter to photon may not fit the morphology

XMM-Newton MOS:

[Bulbul, Markevitch, Foster, Smith, Loewenstein, Randall '14]

- Signal in Perseus ~8 times stronger than in full sample
 Half of the Perseus Signal is within the central 20 kpc but R_{DM} ~ 360 kpc
- \Rightarrow Dark matter to photon may not fit the morphology

XMM-Newton MOS:

[Bulbul, Markevitch, Foster, Smith, Loewenstein, Randall '14]

	Full Sample (73 cluster)	Coma +Centaurus +Ophiuchus	Perseus (without core)	Perseus (with core)
$ \sin^2(2\theta) \\ (10^{-11}) $	$6.8^{+1.4}_{-1.4}$	$18.2^{+4.4}_{-3.9}$	$23.3^{+7.6}_{-6.9}$	$55.3^{+25.5}_{-15.9}$

- Signal in Perseus ~8 times stronger than in full sample
- Half of the Perseus Signal is within the central 20 kpc but $R_{DM}\simeq 360~{
 m kpc}$
- \Rightarrow Dark matter to photon may not fit the morphology

XMM-Newton MOS:

[Bulbul, Markevitch, Foster, Smith, Loewenstein, Randall '14]

	Full Sample (73 cluster)	Coma +Centaurus +Ophiuchus	Perseus (without core)	Perseus (with core)
$ \sin^2(2\theta) \\ (10^{-11}) $	$6.8^{+1.4}_{-1.4}$	$18.2^{+4.4}_{-3.9}$	$23.3^{+7.6}_{-6.9}$	$55.3^{+25.5}_{-15.9}$

- Signal in Perseus ~ 8 times stronger than in full sample
- Similar with Suzaku: 85% of signal is within central I30 kpc (66% expected from DM to photons) [Urban, Werner, Allen, Simionescu, Kaastra, Strigari 'I4(Nov)]
- \Rightarrow Dark matter to photon may not fit the morphology

XMM-Newton MOS:

[Bulbul, Markevitch, Foster, Smith, Loewenstein, Randall '14]

	Full Sample (73 cluster)	Coma +Centaurus +Ophiuchus	Perseus (without core)	Perseus (with core)
$ \sin^2(2\theta) \\ (10^{-11}) $	$6.8^{+1.4}_{-1.4}$	$18.2^{+4.4}_{-3.9}$	$23.3^{+7.6}_{-6.9}$	$55.3^{+25.5}_{-15.9}$

- Signal in Perseus ~ 8 times stronger than in full sample
- XMM morphology: Signal is concentrated in cool core Consistent with ${
 m DM} o a o \gamma$! [Carlson, Jeltema, Profumo '14]

 \Rightarrow Dark matter to photon may not fit the morphology

Outline

Summary of 3.5 keV observations The model: DM → a → γ DM → a → γ vs DM → γ morphology A Cosmic Axion Background

A 3.5 keV Photon Line from a 3.5 keV ALP Line

Markus Rummel 20 / 50

Dark matter to axion to photon $DM \rightarrow a \rightarrow \gamma$

- Axions transform to photons in cluster/galactic magnetic fields
- Theoretically equally well motivated as $DM \rightarrow \gamma$ (axions are typically associated to a high scale, nothing is known about the particle nature of DM)
- Signal strength follows DM density and strength of the magnetic field
- \Rightarrow Signal peaks on scales of the cluster magnetic field! (Perseus)

Dark matter to axion decays

DM is a scalar

Decay via
$$\frac{\Phi}{\Lambda} \partial_{\mu} a \partial^{\mu} a$$
 with lifetime
 $\tau_{\Phi} = \left(\frac{7.1 \text{ keV}}{m_{\Phi}}\right)^3 \left(\frac{\Lambda}{10^{17} \text{ GeV}}\right)^2 1.85 \times 10^{27} \text{ s}$

or DM is a fermion unless

(cosmological moduli problem, unless [Linde '96, Takahashi, Yanagida '11])

Decay via
$$\frac{\partial_{\mu}a}{\Lambda} \bar{\psi} \gamma^{\mu} \gamma^{5} \chi$$
 with lifetime
 $\tau_{\psi} = \left(\frac{7.1 \text{ keV}}{m_{\psi}}\right)^{3} \left(\frac{\Lambda}{10^{17} \text{ GeV}}\right)^{2} 0.92 \times 10^{27} \text{ s}$

A 3.5 keV Photon Line from a 3.5 keV ALP Line

Markus Rummel 22 / 50

Axion-photon conversion

Axion-photon coupling in

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{1}{2} m_{a}^{2} a^{2} + \frac{a}{M} \mathbf{E} \cdot \mathbf{B}$$
induces [Raffelt, Stodolsky '87]

$$P(a \to \gamma) = \sin^2(2\theta) \sin^2\left(\frac{\Delta}{\cos 2\theta}\right)$$

with
$$\theta \sim \frac{B_{\perp}E_a}{Mn_e}$$
, $\Delta \sim \frac{n_eL}{E_a}$ (for $m_a < 10^{-11} \text{ eV}$)

A 3.5 keV Photon Line from a 3.5 keV ALP Line

 $\frac{a}{M}F_{\mu\nu}\tilde{F}^{\mu\nu} = \frac{a}{M}\vec{E}\cdot\vec{B}\,.$

Axion-photon conversion

Axion-photon coupling in

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{1}{2} m_a^2 a^2 + \frac{a}{M} \mathbf{E} \cdot \mathbf{B}$$

induces [Raffelt, Stodolsky '87]

$$P(a \to \gamma) = \sin^2(2\theta) \sin^2\left(\frac{\Delta}{\cos 2\theta}\right)$$

with
$$\theta \sim \frac{B_{\perp}E_a}{M n_e}$$
, $\Delta \sim \frac{n_e L}{E_a}$ (for $m_a < 10^{-11} \text{ eV}$)
 $P_{a \to \gamma}^{\text{cluster}} \sim \frac{B^2 L R_{\text{cluster}}}{M^2}$

/

A 3.5 keV Photon Line from a 3.5 keV ALP Line

 $\frac{a}{M}F_{\mu\nu}\tilde{F}^{\mu\nu} = \frac{a}{M}\vec{E}\cdot\vec{B}\,.$

Outline

Summary of 3.5 keV observations
 The model: DM → a → γ
 DM → a → γ vs DM → γ morphology
 A Cosmic Axion Background

A 3.5 keV Photon Line from a 3.5 keV ALP Line

Markus Rummel 24 / 50

Predictions: Cluster morphology

 $F_{DM \to \gamma} = \frac{\Gamma_{DM \to \gamma}}{4\pi d(z)^2} (1+z) \int_V \frac{\rho_{DM}}{m_{DM}} dV$

Markus Rummel 25 / 50

eta =0.5 (Coma): [Bonafede, Feretti, Murgia, Govoni, Giovannini, Dallacasa, Dolag, Taylor '10] eta = | (Hydra A): [Kuchar, Enßlin, '|] Coma eta = 1rength ⁴ 3.5 keV Photon Line from and Sake ALP Line

Predictions: Clusters

 Nearby cluster do not fit in Field of view of XMM (2-3 sigma excess of nearby clusters over full sample)

	Full Sample (73 cluster)	Coma +Centaurus +Ophiuchus	Perseus (without core)	Perseus (with core)
$\sin^2(2\theta)$ (10^{-11})	$6.8^{+1.4}_{-1.4}$	$18.2^{+4.4}_{-3.9}$	$23.3^{+7.6}_{-6.9}$	$55.3^{+25.5}_{-15.9}$

Predictions: Milky Way

(excluding galactic center)

A 3.5 keV Photon Line from a 3.5 keV ALY Line

Markus Rummel 30 / 50

M3 I

- In many ways similar to MW but twice as big
- Regular magnetic field is significantly bigger and significantly more coherent than in MW
- $B_{reg} \sim B_{random} \sim 5\mu \text{G}$ between 6 14 kpc vs generally $B_{reg} \sim \frac{B_{random}}{3}$ [Han, Beck, Berkhuijsen '98], [Flechter, Berkhuijsen, Beck, Shukurov '03]
- No sign of large scale field reversal as in MW
- Close to edge on (77.5 degrees inclination)

M3 I

- In many ways similar to MW but twice as big
- Regular magnetic field is significantly bigger and significantly more coherent than in MW
- $B_{reg} \sim B_{random} \sim 5\mu \text{G}$ between 6 14 kpc vs generally $B_{reg} \sim \frac{B_{random}}{3}$ [Han, Beck, Berkhuijsen '98], [Flechter, Berkhuijsen, Beck, Shukurov '03]
- No sign of large scale field reversal as in MW
- Close to edge on (77.5 degrees inclination)

 \Rightarrow For $B_{\perp} \sim 5 \,\mu\text{G}$, $L \sim 20 \,\text{kpc}$: $P_{a \to \gamma, M31} \sim 10^2 \, P_{a \to \gamma, MW}$

Predictions: Galaxies

- Signals from edge on galaxies should be stronger than from face on
- Consistent with Anderson et al. non-detection!

A 3.5 keV Photon Line from a 3.5 keV ALP Line

Stacked galaxy spectra

Prediction: No Signal in generic stacked sample

[Cicoli, Conlon, Marsh, MR 1403.2370]

- Dwarf spheroidals [Malyshev, Neronov, Eckert 1408.3531]
- Stacked spirals [Anderson, Churazov, Bregman 1408.4115]

 Log_{10} (Expected Flux/cm⁻²s⁻¹)

[Alvarez, Conlon, Day, Marsh, MR '14(Oct)]

• Electron density

 $n_{e,GC}(x, y, z) = 10 \text{ cm}^{-3} \exp\left[-\frac{x^2 + (y - y_{GC})^2}{L_{GC}^2}\right] \exp\left[-\frac{(z - z_{GC})^2}{H_{GC}^2}\right]$ $L_{GC} = 145 \text{ pc and } H_{GC} = 26 \text{ pc.}$ $y_{GC} = 10 \text{ pc and } z_{GC} = -20 \text{ pc}$ [Cordes, Lazio '02]

• Magnetic field in central 100-200 pc highly unknown: 0.01 - 1 mG [Davidson '96], [Morris '07, '14], [Ferrière '09, '10]

• FOV:
$$r = 15'$$
 (XMM), $16.8' \times 16.8'$ (Chandra)

[Alvarez, Conlon, Day, Marsh, MR '14(Oct)]

A 3.5 keV Photon Line from a 3.5 keV ALP Line

Markus Rummel 35 / 50

A 3.5 keV Photon Line from a 3.5 keV ALP Line

Markus Rummel 35 / 50

 \Rightarrow XMM detection and Chandra non-detection reconciled

A 3.5 keV Photon Line from a 3.5 keV ALP Line

Markus Rummel 35 / 50

Conclusions

- For $DM \to a \to \gamma$ photon signal is convolution of DM density and magnetic field along l.o.s.
- Different morphology of cluster and galaxy signals than $DM \to \gamma$: (non-)cool core, edge/face on
- Observable flux effectively depends on one free parameter $F_{DM\to a\to\gamma}\propto 1/\tau_{DM\to a}M^2$ (as $DM\to\gamma$)

A 3.5 keV Photon Line from a 3.5 keV ALP Line

Conclusions

Observational consistency of $\mathrm{DM} \to a \to \gamma$:

- Signal is produced in galaxy clusters but absent in dwarf spheroidals and stacked galaxies
- A signal is observed in M31 but not in other galaxies
- Perseus signal follows the cool-core feature

More observations will follow in the near future (particularly Astro-H), hopefully the line remains a signal of new physics!

Outline

Summary of 3.5 keV observations The model: DM → a → γ DM → a → γ vs DM → γ morphology A Cosmic Axion Background

A 3.5 keV Photon Line from a 3.5 keV ALP Line

Markus Rummel 38 / 50

• String Theory compactifications come with $\mathcal{O}(100)$ moduli ϕ

[Cicoli,Conlon,Quevedo '12], [Higaki,Takahashi '12]

• String Theory compactifications come with $\mathcal{O}(100)$ moduli ϕ

[Cicoli,Conlon,Quevedo '12], [Higaki,Takahashi '12]

 Get displaced from minimum during inflation

- String Theory compactifications come with $\mathcal{O}(100)$ moduli ϕ
- Get displaced from minimum during inflation

 M_{Pl} E_{cpt}

[Cicoli,Conlon,Quevedo '12], [Higaki,Takahashi '12]

- String Theory compactifications come with $\mathcal{O}(100)$ moduli ϕ
- Get displaced from minimum during inflation
- Lightest modulus comes to dominate energy of the universe since $\Gamma_{\phi} \sim m_{\phi}^3/M_{\rm Pl}^2$

- String Theory compactifications come with $\mathcal{O}(100)$ moduli ϕ
- Get displaced from minimum during inflation
- Lightest modulus comes to dominate energy of the universe since $\Gamma_{\phi} \sim m_{\phi}^{3\phi} M_{\rm Pl}^2$

- String Theory compactifications come with $\mathcal{O}(100)$ moduli ϕ
- Get displaced from minimum during inflation
- Lightest modulus comes to dominate energy of the universe since $\Gamma_{\phi} \sim m_{\phi}^{3\phi} M_{\rm Pl}^2$
- Decay of lightest modulus starts big bang cosmology

ALP Conversion and the Soft X-Ray Excess in the Coma Cluster

 $\rho \rho_{\text{addition}} \sim a^{-4}(t)$

Markus Rummel

39 / 50

- String Theometic Ecompactifications come with $\mathcal{O}(100) \mod \phi$ E_{cpt}
- Get displaced from minimum during inflation
- Lightest modulus comes to dominate energy of the universe since $\Gamma_{\phi} \sim m_{\phi}^{3\phi} M_{\rm Pl}^2$

[Cicoli,Conlon,Queve 2]'12], [Higaki,Takahashi '12]

 Decay of lightest modulus starts big bang cosmology

A Cosmic Axion Background

- [Conlon, Marsh '13]
- $Br(\phi \rightarrow visibles) vs Br(\phi \rightarrow hidden)$ decides population of different sectors
- String compactifications typically come with light hidden sectors (e.g. hidden gauge groups, ALPs)
- Hidden light fields contribute as Dark Radiation (experimental hints: $Planck: N_{eff} = 3.30 \pm 0.27$ $Planck + H_0: N_{eff} = 3.62 \pm 0.25$)
- $\phi \to ALPs$ generally not suppressed (e.g. via kinetic coupling to volume modulus in type IIB)

A Cosmic Axion Background

- [Conlon, Marsh '13]
- $Br(\phi \rightarrow visibles) vs Br(\phi \rightarrow hidden)$ decides population of different sectors
- String compactifications typically come with light hidden sectors (e.g. hidden gauge groups, ALPs)
- Hidden light fields contribute as Dark Radiation (experimental hints: $Planck: N_{eff} = 3.30 \pm 0.27$ $Planck + H_0: N_{eff} = 3.62 \pm 0.25$)
- $\phi \to \rm ALPs\,$ generally not suppressed (e.g. via kinetic coupling to volume modulus in type IIB)

Dark Radiation/a CAB is a rather generic prediction of String Theory Cosmology

Properties of the CAB

- Modulus decay produces relativistic non-thermal ALPs a with $E_a = m_{\phi}/2$
- Energy density: $\rho_{CAB} = \Delta N_{eff} \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \rho_{CMB}$ CAB energy: $\frac{E_{a,\text{now}}}{T_{\gamma,\text{now}}} \simeq \frac{E_{a,\text{init}}}{T_{\gamma,\text{init}}} \sim \left(\frac{M_{\text{P}}}{m_{\Phi}}\right)^{1/2}$
- For $m_{\phi} \sim 10^6 {
 m GeV}$ ($\gtrsim 10^4 {
 m GeV}$ to avoid CMP)

 $\langle E_{CAB} \rangle \sim 200 \text{ eV} (\text{X-ray})$

Couples to photons via $\mathcal{L} \supset \frac{1}{M} a \, \boldsymbol{E} \cdot \boldsymbol{B}$

Galaxy Clusters and ALPs

- Galaxy Clusters are the largest gravitationally bound objects in the universe
- Typically kpc scale coherent magnetic fields $B \sim \mathcal{O}(1) \mu \mathrm{G}$

Galaxy Clusters and ALPs

- Galaxy Clusters are the largest gravitationally bound objects in the universe
- Typically kpc scale coherent magnetic fields $B \sim \mathcal{O}(1) \mu \mathrm{G}$

⇒ Interesting "Labs" to study the CAB via ALP to photon conversion!

[Conlon, Marsh '13]

Soft X-ray Excess in Coma

- Clusters are filled by hot gas which emits in X-rays via thermal bremsstrahlung
- Soft Excess is observed by EUVE and ROSAT in ~30% of 38 clusters [Bonamente, Lieu, Joy, Nevalainen'02]

Soft X-ray Excess in Coma

 Clusters are filled by hot gas which emits in X-rays via thermal bremsstrahlung

 Soft Excess is observed by EUVE and ROSAT in ~30% of 38 clusters

Proposed astrophysical explanations

- Thermal Bremsstrahlung from a 'colder' (T ~ 200 eV) gas: But associated emission lines not seen
- Inverse-Compton scattering of the CMB by relativistic cosmic ray electrons: But no associated gamma ray bremsstrahlung flux

Proposed astrophysical explanations

- Thermal Bremsstrahlung from a 'colder' (T ~ 200 eV) gas: But associated emission lines not seen
- Inverse-Compton scattering of the CMB by relativistic cosmic ray electrons: But no associated gamma ray bremsstrahlung flux
- \Rightarrow Known astrophysical explanations not compelling
- \Rightarrow Explore cosmological CAB explanation of the soft Xray excess!

Conversion parameters

 Electron density via X-ray brightness profile

$$n_e(r) = n_0 \left(1 + \frac{r^2}{r_c^2}\right)^{-\frac{3}{2}\beta}$$

• Magnetic field via Faraday rotation $RM = \frac{e^3}{2\pi m_e^2} \int_{l.o.s} n_e(l) B_{\parallel}(l) dl$ $\Rightarrow B(r) = C \cdot B_0 \left(\frac{n_e(r)}{n_0}\right)^{\eta}$ (via simulation vs RM)

[Bonafede, Vazza, Bruggen, Murgia, Govoni, Feretti, Giovannini, Ogrean' 13]

• Coherence Length $p(L, \mathbf{x}) \sim L^{n-6}$ or $\sim n_e^{-1} L^{n-6}$

Coma center results

ALP Conversion and the Soft X-Ray Excess in the Coma Cluster

Markus Rummel 46 / 50

Coma outskirts results

Semi-analytical approach:

[Conlon, Kraljic, MR '14]

Coma outskirts results

Semi-analytical approach:

[Conlon, Kraljic, MR '14]

ALP parameter space [Conlon, Kraljic, MR '14]

ALP parameter space [Conlon, Kraljic, MR '14]

Conclusions

- Dark Radiation/a CAB is a generic prediction of String Cosmology
- Soft X-ray excess is present in many clusters
- Cosmological vs astrophysical explanation: One CAB to fit them all $(M, \langle E_{CAB} \rangle)$

- Has to match both morphology and magnitude of soft excess
- Coma Center M, Coma Outskirts M
- Other clusters: A2199 , A2255 , A665 ()

[Powell '14]

ALP Conversion and the Soft X-Ray Excess in the Coma Cluster

Thank you for your attention!

A 3.5 keV Photon Line from a 3.5 keV ALP Line