Extra Higgses at LHC: The EW Road to Baryogenesis

Jose Miguel No (Sussex U.)

1310.6035 (PRD) with M. Ramsey-Musolf. 1305.6610 (JHEP), 1405.5537 (PRL), with G. Dorsch, S. Huber, K. Mimasu. + Work in Progress

Liverpool, March 2015

What is the Origin of the Baryon Asymmetry?

 $\frac{n_B - n_{\bar{B}}}{n_{\gamma}} \sim 10^{-9} \text{ (from BBN)}$

What is the Origin of the Baryon Asymmetry?

What is the Origin of the Baryon Asymmetry?

SAKHAROV CONDITIONS (for dynamical generation of baryon asymmetry)

B Violation

C/CP Violation

Departure from Thermal Equilibrium

What is the Origin of the Baryon Asymmetry?

Departure from Thermal Equilibrium 🗶 not enough

What is the Origin of the Baryon Asymmetry?

What is the Origin of the Baryon Asymmetry?

Universe Expands Adiabatically \Rightarrow Equilibrium Thermal Field Theory \sim

Finite-T Effective Potential V(ϕ ,T) for the Higgs

 $V(\phi,T) \approx (a T^2 - \mu^2) \phi^2 - b T \phi^3 + \lambda \phi^4$

Universe Expands Adiabatically \Rightarrow Equilibrium Thermal Field Theory \sim

Finite-T Effective Potential $V(\phi,T)$ for the Higgs

 $V(\phi,T) \approx (a T^2 - \mu^2) \phi^2 - b T \phi^3 + \lambda \phi^4$

In the SM ($m_h = 125$ GeV) EW Phase Transition Smooth CrossOver K. Kajantie, M. Laine, K. Rummukainen, M. Shaposhnikov, Phys. Rev. Lett. **77** (1996) 2887

Universe Expands Adiabatically \Rightarrow Equilibrium Thermal Field Theory

Finite-T Effective Potential $V(\phi,T)$ for the Higgs

The EW Baryogenesis Recipe: Out of Equilibrium B zaryogene Popolo Con $\Gamma^{b}_{~Sph} \sim ~Exp(\text{-}E_{Sph}/T_{_{N}}) \sim ~\text{SUPPRESSED}$ $(if \langle \phi \rangle / T \ge 1)$ SUDDEN CHANGE IN HIGGS VEN NEEDED FOR EWBG! Sphalerons $\Gamma_{sph}^{(s)}$ Γ^(b)_{Sph} Wall B Broken Phase $\langle \phi \rangle \neq 0$ $\langle \phi \rangle \neq 0$ $\overline{\langle \varphi \rangle} \neq 0$ $<\!\!\phi\!\!> = 0$ Symmetric Phase $\langle \phi \rangle = 0$ <<p><<p><<p><<p><<0</p> V

$$n_B = \underbrace{n_b^L - n_{\overline{b}}^L}_{Changed} + \underbrace{n_b^R - n_{\overline{b}}^R}_{\neq 0} \neq$$

0

W Scale Baryogenesis Needs:

W Scale Baryogenesis Needs:

Goal: LHC signals of EW Phase Transition

2HDM

2HDM

... Add a Second Scalar Doublet to the SM

$$\begin{split} V_{s}(\Phi_{1},\Phi_{2}) &= -\mu_{1}^{2}\Phi_{1}^{\dagger}\Phi_{1} - \mu_{2}^{2}\Phi_{2}^{\dagger}\Phi_{2} - \frac{\mu^{2}}{2}(\Phi_{1}^{\dagger}\Phi_{2} + h.c.) \\ &+ \frac{\lambda_{1}}{2}(\Phi_{1}^{\dagger}\Phi_{1})^{2} + \frac{\lambda_{2}}{2}(\Phi_{2}^{\dagger}\Phi_{2})^{2} + \lambda_{3}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{2}) \\ &+ \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{1}^{\dagger}\Phi_{2}) + \frac{\lambda_{5}}{2}\left((\Phi_{1}^{\dagger}\Phi_{2})^{2} + h.c.\right) \end{split}$$

• Provides ALL Needed Ingredients for EW Baryogenesis (CP Violation)

(For Simplicity, we do not consider CP Violation here)

2HDM

$$\begin{split} \mathcal{V}_{s}(\Phi_{1},\Phi_{2}) &= -\mu_{1}^{2}\Phi_{1}^{\dagger}\Phi_{1} - \mu_{2}^{2}\Phi_{2}^{\dagger}\Phi_{2} - \frac{\mu^{2}}{2}(\Phi_{1}^{\dagger}\Phi_{2} + h.c.) & \Phi_{1} = \begin{pmatrix} \lambda_{1} \\ \frac{\nu_{1} + h_{1} + i\eta_{1}}{\sqrt{2}} \end{pmatrix} \\ &+ \frac{\lambda_{1}}{2}(\Phi_{1}^{\dagger}\Phi_{1})^{2} + \frac{\lambda_{2}}{2}(\Phi_{2}^{\dagger}\Phi_{2})^{2} + \lambda_{3}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{2}) \\ &+ \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{1}^{\dagger}\Phi_{2}) + \frac{\lambda_{5}}{2}\left((\Phi_{1}^{\dagger}\Phi_{2})^{2} + h.c.\right) & \Phi_{2} = \begin{pmatrix} \varphi_{2}^{+} \\ \frac{\nu_{2} + h_{2} + i\eta_{2}}{\sqrt{2}} \end{pmatrix} \end{split}$$

- Provides ALL Needed Ingredients for EW Baryogenesis (CP Violation)
 (For simplicity, we do not consider CP Violation here)
- \bullet New "Heavy" Scalars H_0 (CP-Even), A_0 (CP-Odd) and H^\pm
- 6 New Parameters m_{H_0} m_{A_0} $m_{H^{\pm}}$ μ α aneta

 $\left(\begin{array}{c} \varphi_1^+ \end{array} \right)$

2HDM

$$\begin{split} V_{s}(\Phi_{1},\Phi_{2}) &= -\mu_{1}^{2}\Phi_{1}^{\dagger}\Phi_{1} - \mu_{2}^{2}\Phi_{2}^{\dagger}\Phi_{2} - \frac{\mu^{2}}{2}(\Phi_{1}^{\dagger}\Phi_{2} + h.c.) & \Phi_{1} = \begin{pmatrix} \lambda_{1} \\ \frac{\nu_{1} + h_{1} + i\eta_{1}}{\sqrt{2}} \end{pmatrix} \\ &+ \frac{\lambda_{1}}{2}(\Phi_{1}^{\dagger}\Phi_{1})^{2} + \frac{\lambda_{2}}{2}(\Phi_{2}^{\dagger}\Phi_{2})^{2} + \lambda_{3}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{2}) \\ &+ \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{1}^{\dagger}\Phi_{2}) + \frac{\lambda_{5}}{2}\left((\Phi_{1}^{\dagger}\Phi_{2})^{2} + h.c.\right) & \Phi_{2} = \begin{pmatrix} \varphi_{2}^{+} \\ \frac{\nu_{2} + h_{2} + i\eta_{2}}{\sqrt{2}} \end{pmatrix} \end{split}$$

- Provides ALL Needed Ingredients for EW Baryogenesis (CP Violation)
 (For simplicity, we do not consider CP Violation here)
- \bullet New "Heavy" Scalars H_0 (CP-Even), A_0 (CP-Odd) and H^\pm
- 6 New Parameters m_{H_0} m_{A_0} $m_{H^{\pm}}$ μ α aneta

Attention
$$h = \cos \alpha h_1 + \sin \alpha h_2$$

 $H^{\pm} = -\sin \beta \varphi_1^{\pm} + \cos \beta \varphi_2^{\pm}$
 $H_0 = -\sin \alpha h_1 + \cos \alpha h_2$
 $H_0 = -\sin \beta \eta_1 + \cos \beta \eta_2$

 $\alpha = \beta \rightarrow$ light Higgs h is SM-like (Differs from Usual 2HDM Definition by

 π

 $\overline{2}$

 $\int \varphi_1^+$

2HDM

$$\begin{split} V_{s}(\Phi_{1},\Phi_{2}) &= -\mu_{1}^{2}\Phi_{1}^{\dagger}\Phi_{1} - \mu_{2}^{2}\Phi_{2}^{\dagger}\Phi_{2} - \frac{\mu^{2}}{2}(\Phi_{1}^{\dagger}\Phi_{2} + h.c.) & \Phi_{1} = \begin{pmatrix} \mu_{1}^{2} & \mu_{1}^{\dagger} \\ \frac{\nu_{1} + h_{1} + i\eta_{1}}{\sqrt{2}} \end{pmatrix} \\ &+ \frac{\lambda_{1}}{2}(\Phi_{1}^{\dagger}\Phi_{1})^{2} + \frac{\lambda_{2}}{2}(\Phi_{2}^{\dagger}\Phi_{2})^{2} + \lambda_{3}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{2}) \\ &+ \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{1}^{\dagger}\Phi_{2}) + \frac{\lambda_{5}}{2}\left((\Phi_{1}^{\dagger}\Phi_{2})^{2} + h.c.\right) & \Phi_{2} = \begin{pmatrix} \varphi_{2}^{+} & \mu_{2}^{+} \\ \frac{\nu_{2} + h_{2} + i\eta_{2}}{\sqrt{2}} \end{pmatrix} \end{split}$$

- Provides ALL Needed Ingredients for EW Baryogenesis (CP Violation)
 (For simplicity, we do not consider CP Violation here)
- \bullet New "Heavy" Scalars H_0 (CP-Even), A_0 (CP-Odd) and H^\pm
- 6 New Parameters m_{H_0} m_{A_0} $m_{H^{\pm}}$ μ α aneta
- We Focus on Type I 2HDM (all fermions coupled to same scalar doublet)

 $\Rightarrow \text{ EW PHASE TRANSITION <u>DOES NOT</u> DEPEND ON THE TYPE} \Rightarrow \text{EXPERIMENTAL CONSTRAINTS <u>DO</u> DEPEND ON THE TYPE}$

Type	u_R	d_R	e_R
Ι	+	+	+
II	+	_	_
Х	+	+	_
Y	+	_	+

 $\int \varphi_1^+$

 \rightarrow We Scan m_{H_0} m_{A_0} $m_{H^{\pm}}$ μ α $\tan\beta$

⇒ Stability of the Effective Potential at 1-loop

D. Eriksson, J. Rathsman, O. Stal, Comput. Phys. Commun. 181 (2010) 189

P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K. Williams, Comput. Phys. Commun. 181 (2010) 138

 $\Rightarrow \text{ Impose Flavour Constraints (mainly <math>b \rightarrow s \gamma$)} F. Mahmoudi, O. Stal, Phys. Rev D 81 (2010) 035016

⇒ Global Fit to light Higgs Properties -

Selects Points Satisfying: Unitarity, Perturbativity, EWPO, LEP/Tevatron/LHC Bounds

Constraints on α and tan β

C. Chen, S. Dawson, M. Sher, Phys. Rev D 88 (2013) 015018

G. Belanger, D. Dumont, U. Ellwanger, J. F Gunion, S. Kraml, Phys. Rev D **88** (2013) 075008

Points satisfying all above constraints are "Physical"

- \rightarrow We Scan m_{H_0} m_{A_0} $m_{H^{\pm}}$ μ α $\tan\beta$
 - ⇒ Stability of the Effective Potential at 1-loop
 - D. Eriksson, J. Rathsman, O. Stal, Comput. Phys. Commun. 181 (2010) 189

P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K. Williams, Comput. Phys. Commun. **181** (2010) 138

- $\Rightarrow \text{ Impose Flavour Constraints (mainly } b \rightarrow s \gamma \text{)}$ F. Mahmoudi, O. Stal, Phys. Rev D 81 (2010) 035016
- ⇒ Global Fit to light Higgs Properties -

Selects Points Satisfying: Unitarity, Perturbativity, EWPO, LEP/Tevatron/LHC Bounds

Constraints on α and tan β

C. Chen, S. Dawson, M. Sher, Phys. Rev D 88 (2013) 015018

G. Belanger, D. Dumont, U. Ellwanger, J. F Gunion, S. Kraml, Phys. Rev D **88** (2013) 075008

Points satisfying all above constraints are "Physical"

 \rightarrow Strength of the EW Phase Transition:

 \Rightarrow Use Daisy Resummed 1-loop Thermal Effective Potential $V_{
m eff}(\phi,T)$

 \Rightarrow Critical Temperature T_{c}

 $\Rightarrow \mathbf{v} / T_c > 1$

Strongly First Order EW Phase Transition

6

Strong EW Phase Transition vs "Physical"

G. Dorsch, S. Huber, K. Mimasu, J.M. N, Phys. Rev. Lett. 113 (2014) 211802

Strong EW Phase Transition vs "Physical"

G. Dorsch, S. Huber, K. Mimasu, J.M. N, Phys. Rev. Lett. 113 (2014) 211802

1st Order EW Phase Transition Leads to very different 2HDM than usually considered (MSSM-like)

Strong EW Phase Transition vs "Physical"

G. Dorsch, S. Huber, K. Mimasu, J.M. N, Phys. Rev. Lett. 113 (2014) 211802

1st Order EW Phase Transition Leads to <u>very different 2HDM than usually considered</u> (MSSM-like)

G. Dorsch, S. Huber, K. Mimasu, J.M. N, Phys. Rev. Lett. 113 (2014) 211802

Strong EW Phase Transition vs "Physical"

Strong EW Phase Transition vs "Physical"

• Decay $A_0
ightarrow H_0 Z$ Dominant for $m_{A_0} - m_{H_0} \sim v$

- Decay $A_0 \rightarrow H_0 Z$ Dominant for $m_{A_0} m_{H_0} \sim v$
- $\Rightarrow A_0 \rightarrow h Z$ supressed by $\sin(\alpha \beta)$
- \Rightarrow Competing Channels
- $A_0 \to \bar{t}t \sim (\tan\beta)^{-2}$

 m_{H_0} [GeV]

• Decay $A_0
ightarrow H_0 Z$ Dominant for $m_{A_0} - m_{H_0} \sim v$

• Simple Benchmarks for a Strong EW Phase Transition: $m_{A_0} = m_{H^{\pm}} = 400, \ m_{H_0} = 180, \ \mu = 100$ $\tan\beta = 2$ (controls $gg \rightarrow A_o$ production)

- Simple Benchmarks for a Strong EW Phase Transition: $m_{A_0} = m_{H^{\pm}} = 400, \ m_{H_0} = 180, \ \mu = 100$ $\tan\beta = 2$ (controls $gg \rightarrow A_o$ production)
- Search Strategy Dictated by Dominant Decay Mode of H_0

- $A: \alpha - \beta = 0.001\pi$ (aligned) $\overline{b}b$

 $\cdots B$: α - $\beta = 0.1\pi$ (non-aligned) WW, ZZ

(A Word on H_o searches at LHC)

G. Dorsch, S. Huber, K. Mimasu, J.M. N, In Preparation

(A Word on H_o searches at LHC)

2HDM LHC Searches for a 1st Order EW Phase Transition Naturally fill the "Blind Spots"

LHC DISCOVERY POTENTIAL OF BENCHMARK SCENARIOS

 $oldsymbol{0}$ A few words on the Analysis...

- ⇒ Type I 2HDM implemented in FeynRules (including gluon-fusion).
- ⇒ Signal & relevant backgrounds generated using MadGraph5_aMC@NLO. Generated events passed on to Pythia for Parton Showering and Hadronization and subsequently to Delphes for detector simulation.

 \rightarrow Use of NLO flat K-factors for signal (SusHi) and dominant backgrounds.

- ⇒ "Cut & Count" analysis on a small set of kinematical variables, to extract signal over background.
- Determined required Integrated Luminosity at 14 TeV to achieve 51 statistical significance via a CLs hypothesis test.
 Only statistical uncertainties.
 10% systematic uncertainty on background.
- \Rightarrow Also considered current 8 TeV LHC data for $\bar{b}b\,\ell\ell$

LHC DISCOVERY POTENTIAL OF BENCHMARK SCENARIOS

2 Benchmark A: $A_0 \rightarrow H_0 Z \rightarrow \overline{bb} \ell \ell$ (α - $\beta = 0.001\pi$)

- \Rightarrow Irreducible backgrounds are $Z\overline{b}b, \overline{t}t, ZZ, hZ$
- ⇒ Analysis at 14 TeV (potential sensitivity already with 7-8 TeV LHC data): Event Selection ATLAS-CONF-2013-079→ Anti-kT Jets with distance parameter R = 0.6
 - $\rightarrow 2$ b-tagged Jets with $|\eta| < 2.5$
 - $\rightarrow 2$ Isolated (within a cone of 0.3), Same-flavour leptons. $|\eta| < 2.5$ (2.7) for electrons (muons)

\rightarrow	$P_T^{c_1}$	>	40 <i>GeV</i> ,	$P_T^{c_2}$	>	20	GeV.
---------------	-------------	---	-----------------	-------------	---	----	------

K-factor:	1.6	1.5	1.4	-	-
	Signal	$t\bar{t}$	$Z b \overline{b}$	ZZ	Zh
Event selection	14.6	1578	424	7.3	2.7
$80 < m_{\ell\ell} < 100~{\rm GeV}$	13.1	240	388	6.6	2.5
$egin{array}{l} H_T^{ m bb} > 150{ m GeV} \ H_T^{\ell\ell m bb} > 280{ m GeV} \end{array}$	8.2	57	83	0.8	0.74
$\Delta R_{bb} < 2.5, \Delta R_{\ell\ell} < 1.6$	5.3	5.4	28.3	0.75	0.68
$m_{bb}, m_{\ell\ell bb}$ signal region	3.2	1.37	3.2	< 0.01	< 0.02

LHC DISCOVERY POTENTIAL OF BENCHMARK SCENARIOS

2 Benchmark A: $A_0 \rightarrow H_0 Z \rightarrow \overline{b}b \,\ell\ell$ (α - β = 0.001 π)

 \Rightarrow Irreducible backgrounds are $Z\overline{b}b, \overline{t}t, ZZ, hZ$

- ⇒ Analysis at 14 TeV (potential sensitivity already with 7-8 TeV LHC data): Event Selection ATLAS-CONF-2013-079→ Anti-kT Jets with distance parameter R = 0.6
 - $\rightarrow 2$ b-tagged Jets with $|\eta| < 2.5$
 - → 2 Isolated (within a cone of 0.3), Same~flavour leptons. $|\eta| < 2.5$ (2.7) for electrons (muons) → $P_T^{\ell_1} > 40 \text{ GeV}, P_T^{\ell_2} > 20 \text{ GeV}.$ 14 TeV LHC, $\mathscr{L} = 20 \text{ fb}^{-1}$

11

LHC DISCOVERY POTENTIAL OF BENCHMARK SCENARIOS

- **9** Benchmark B: $A_0 \to H_0 Z \to W^+ W^- \ell \ell \to 4\ell + 2\nu$ (α - $\beta = 0.1\pi$)
 - \Rightarrow Most sensitive A_o search channel away from alignment
 - $\Rightarrow A_0 \rightarrow H_0 Z \rightarrow ZZ\ell\ell \rightarrow 4\ell + 2j \text{ also promising}$ B. Coleppa, F. Kling, S. Su, JHEP **1409** (2014) 161
 - \Rightarrow Main backgrounds are ZZ, $Z\bar{t}t hZ$, ZWW subdominant
 - ⇒ Analysis & Event Selection similar to previous case:
 - → 4 Isolated (cone of 0.3) leptons, same-flavour pairs. $|\eta| < 2.5$ (2.7) for electrons (muons) → $P_T^{\ell_1} > 40 \text{ GeV}, P_T^{\ell_{2,3,4}} > 20 \text{ GeV}.$

LHC DISCOVERY POTENTIAL OF BENCHMARK SCENARIOS

3 Benchmark B: $A_0 \rightarrow H_0 Z \rightarrow W^+ W^- \ell \ell \rightarrow 4\ell + 2\nu$ (α - $\beta = 0.1\pi$)

 \Rightarrow Most sensitive A_o search channel away from alignment

- $\Rightarrow A_0 \rightarrow H_0 Z \rightarrow ZZ\ell\ell \rightarrow 4\ell + 2j \text{ also promising}$ B. Coleppa, F. Kling, S. Su, JHEP **1409** (2014) 161
- \Rightarrow Main backgrounds are ZZ, $Z\bar{t}t hZ, ZWW$ subdominant

LHC DISCOVERY POTENTIAL OF BENCHMARK SCENARIOS

3 Benchmark B: $A_0 \to H_0 Z \to W^+ W^- \ell \ell \to 4\ell + 2\nu$ (α - $\beta = 0.1\pi$)

 \Rightarrow Most sensitive A_0 search channel away from alignment

- $\Rightarrow A_0 \rightarrow H_0 Z \rightarrow ZZ\ell\ell \rightarrow 4\ell + 2j \text{ also promising}$ B. Coleppa, F. Kling, S. Su, JHEP **1409** (2014) 161
- \Rightarrow Main backgrounds are ZZ, $Z\bar{t}t hZ$, ZWW subdominant

⇒ Analysis & Event Selection similar to previous case:

 \rightarrow 4 Isolated (cone of 0.3) leptons, same-flavour pairs. $|\eta| < 2.5$ (2.7) for electrons (muons)

2HDM Summary

Very clear connection between EW Phase Transition & LHC signatures $A_0 \rightarrow H_0 Z \rightarrow \bar{b}b \,\ell\ell$

 $A_0 \to H_0 Z \to W^+ W^- \ell \ell \to 4\ell + 2\nu$

2HDM @LHC really promising!

 $|\mathbf{H}|^2$ unique Lorentz & Gauge Invariant term w. d < 4

SM + (Real) Scalar Singlet S

$$V(H,S) = -\mu^2 |H|^2 + \lambda |H|^4 + \frac{b_2}{2}S^2 + \frac{b_4}{4}S^4 + \frac{a_1}{2}S|H|^2 + \frac{a_2}{2}S^2|H|^2 + \frac{b_3}{3}S^3$$

 $|\mathbf{H}|^2$ unique Lorentz & Gauge Invariant term w. d < 4

S. Profumo, M. Ramsey-Musolf, G. Shaughnessy, JHEP 0708 (2007) 010

 $|\mathbf{H}|^2$ unique Lorentz & Gauge Invariant term w. d < 4

S. Profumo, M. Ramsey-Musolf, G. Shaughnessy, JHEP 0708 (2007) 010

Higgs Portal @LHC

→ Resonant Di-Higgs Production

M. Dolan, C. Englert, M. Spannowsky, Phys. Rev. **D87** (2013) 5, 055002 J. Cao, Z. Heng, L. Shang, P. Wan, J. M. Yang, JHEP **1304** (2013) 134 J. M. N, M. Ramsey-Musolf, Phys. Rev. **D89** (2014) 095031

bb TT, bb yy final states

Higgs Portal @LHC

→ Resonant Di-Higgs Production

M. Dolan, C. Englert, M. Spannowsky, Phys. Rev. **D87** (2013) 5, 055002 J. Cao, Z. Heng, L. Shang, P. Wan, J. M. Yang, JHEP **1304** (2013) 134 J. M. N, M. Ramsey-Musolf, Phys. Rev. **D89** (2014) 095031

bb ττ, bb γγ final states

Potential Discovery Mode of h_2 (if $h_2 \rightarrow ZZ$ suppressed)

Probe of the EW Phase Transition

Higgs Portal @LHC

Resonant Di-Higgs Production

M. Dolan, C. Englert, M. Spannowsky, Phys. Rev. **D87** (2013) 5, 055002 J. Cao, Z. Heng, L. Shang, P. Wan, J. M. Yang, JHEP **1304** (2013) 134 J. M. No, M. Ramsey-Musolf, Phys. Rev. **D89** (2014) 095031

bb TT, bb yy final states

Potential Discovery Mode of h_2 (if $h_2 \rightarrow ZZ$ suppressed)

Probe of the EW Phase Transition

.... Need to be combined with light Higgs data

S. Profumo, M. Ramsey-Musolf, C. Wainwright, P. Winslow, arXiv:1407.5342

A very interesting search!

M. Ramsey-Musolf, J.M.N, P. Winslow, et al, In Preparation

Higgs Portal @LHC

 $p p \rightarrow h_2 \rightarrow h_1 \quad h_1 \rightarrow bb \quad \tau\tau$

Classify according to Leptonic/Hadronic Nature of each τ -Decay

Benchmark Scenarios: Boosted: $C_{\theta}^2 = 0.66$, $m_2 = 270 \text{ GeV}$, $\lambda_{211} = 325 \text{ GeV}$ Boosted: $C_{\theta}^2 = 0.66$, $m_2 = 370 \text{ GeV}$, $\lambda_{211} = 325 \text{ GeV}$

Main SM Backgrounds

Higgs Portal @LHC

 $p p \rightarrow h_2 \rightarrow h_1 \quad h_1 \rightarrow bb \quad \tau\tau$

Classify according to Leptonic/Hadronic Nature of each τ -Decay

Need to Reconstruct both 125 GeV Higgses m_{bb} m_{π}

but τ -Decay involves missing Energy

(needs boosted Higgs)

⇒ MISSING MASS CALCULATOR

A. Elagin, P. Murat, A. Pranko, A. Safonov, Nucl. Instrum. Meth. A654 (2011) 481

Higgs Portal @LHC

$p p \rightarrow h_2 \rightarrow h_1 \quad h_1 \rightarrow bb \quad \tau\tau$

SemiLeptonic Mode: $\tau_{lep} \tau_{had}$

UN-BOOSTED	$h_2 \rightarrow h_1 h_1$		$tar{t}$	$Zbar{b}$	Zjj
	$b\bar{b} au_{ m lep} au_{ m had}$	$b\bar{b}\ell au_{ m had}$	$b\bar{b} au_{ m lep} au_{ m had}$	$b\bar{b} au_{ m lep} au_{ m had}$	$jj au_{ m lep} au_{ m had}$
Event selection	19.17	5249	762	601	98
$\Delta R_{bb} > 2.1, P_{T,b_1} > 45 \text{ GeV}, P_{T,b_2} > 30 \text{ GeV}$	11.45	2639	384	188	10.8
h_1 -mass: 90 GeV < m_{bb} < 140 GeV	8.00	531	80	69	3.68
Collinear x_1, x_2 Cuts	4.81	209	36.4	41.6	2.41
$\Delta R_{\ell au} > 2$	4.10	129	23.1	26.5	2.03
$m_T^\ell < 30 { m GeV}$	3.44	30.9	11.1	24.4	1.90
h_1 -mass: 110 GeV $< m_{\tau\tau}^{\rm coll} < 150 { m GeV}$	1.56	4.97	2.05	4.92	0.38
$E_T^{\text{miss}} < 50 \text{ GeV}$	1.37	3.31	0.87	4.29	0.36
h_2 -mass: 230 GeV $< m_{bb\tau\tau}^{\text{coll}} < 300 \text{ GeV}$	1.29	0.39	0.17	(1.21)	0.13

$S/\sqrt{B} \sim 5 \rightarrow L \sim 50 \ fb^{-1}$

BOOSTED	$h_2 \rightarrow h_1 h_1$		$t\bar{t}$	$Zbar{b}$	Zjj
	$b\bar{b} au_{ m lep} au_{ m had}$	$b\bar{b}\ell au_{ m had}$	$b\bar{b} au_{ m lep} au_{ m had}$	$b \overline{b} au_{ m lep} au_{ m had}$	$jj au_{ m lep} au_{ m had}$
Event selection	10.73	5249	762	601	98
$\Delta R_{bb} < 2.2, P_{T,b_1} > 50 \text{ GeV}, P_{T,b_2} > 30 \text{ GeV}$	6.02	1576	223	85	2.46
h_1 -mass: 90 GeV < m_{bb} < 140 GeV	4.77	672	94	31.5	0.84
$ \vec{P}_{T}^{bb} > 110 { m GeV}$	3.42	345	49	13.9	0.33
Collinear x_1, x_2 Cuts	2.31	136	22.3	8.38	0.22
$\Delta R_{\ell\tau} < 2.3$	1.71	68	11.1	4.31	0.055
$m_T^\ell < 30 { m ~GeV}$	1.46	18.4	5.64	4.02	0.051
h_1 -mass: 110 GeV < $m_{\tau\tau}^{\rm coll}$ < 150 GeV	1.05	4.2	1.26	0.30	0.003
$25 \text{ GeV} < E_T^{\text{miss}} < 90 \text{ GeV}$	0.76	2.93	0.75	0.23	0.002
h_2 -mass: 330 GeV $< m_{bb\tau\tau}^{\text{coll}} < 400 \text{ GeV}$	0.63	0.60	0.15	0.026	< 0.001

 $S/\sqrt{B} \sim 5 \rightarrow L \sim 100 \ fb^{-1}$

Conclusions

EW Baryogenesis as Motivation for BSM Physics Near EW Scale

Extended Higgs Sectors: Archetype Scenarios for such a Connection between EW Cosmology and LHC Physics

HIGGS PORTAL: Resonant Di-Higgs Production

These Results Motivate Taking These Searches Seriously @LHC14 These Results Motivate Taking These Searches Seriously @LHC14

Let's Stay tuned @LHC14!

These Results Motivate Taking These Searches Seriously @LHC14

Let's Stay tuned @LHC14!

Thanks!!

$\begin{array}{l} \text{ATLAS-CONF-2013-079]} \hline \overline{b}b\,\ell\ell \ \text{at}\ 7-8\ \text{TeV} \end{array}$

- Defines signal regions according to number of leptons, additional jets.
- Splits them according to the p_T of the Z (no m_{bb} requirement).
- Global fit extracts the background normalisations and signal strength of a 125 GeV SM Higgs.
- P_T^Z in our signal set by $m_{A_0} m_{H_0}$. Signal will populate boosted kinematical region.

