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The ¢ and a theorems

Consider a theory with couplings {g'}. The -functions are
defined by
d
P9
S-functions describe how couplings change with energy scale;
derived from simple poles in counterterms (using dimensional
regularisation with d =2 —¢,4 —¢,...).
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The ¢ and a theorems

Consider a theory with couplings {g'}. The -functions are
defined by
d

P9
S-functions describe how couplings change with energy scale;
derived from simple poles in counterterms (using dimensional
regularisation with d =2 —¢,4 —¢,...).
The Zamolodchikov c-theorem (two dimensions) says that
there is a function ¢ such that

0ic = Gup’(g) or dyc=dg'oc=dg'Gyp’,

so that

d
e slajc = Gyp's’,

where Gy, is a positive definite metric.
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m c decreases towards the IR (counts d. o. f?).
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m The c-theorem constrains coupling flows in parameter
space (irreversibility, no cyclic flows).

The a-theorem is the proposed generalisation to four
dimensions of the c-theorem. Two possible versions:
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m c decreases towards the IR (counts d. o. f?).
m Fixed-point value cx satisfies COV -CR> 0
m The c-theorem constrains coupling flows in parameter
space (irreversibility, no cyclic flows).
The a-theorem is the proposed generalisation to four
dimensions of the c-theorem. Two possible versions:

m The weak a-theorem: There is a function a(g) defined at
fixed points of the theory such that aDV -aR> 0.
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The ¢ and a theorems

m c decreases towards the IR (counts d. o. f?).
m Fixed-point value cx satisfies v — SR> 0

m The c-theorem constrains coupling flows in parameter
space (irreversibility, no cyclic flows).

The a-theorem is the proposed generalisation to four
dimensions of the c-theorem. Two possible versions:

m The weak a-theorem: There is a function a(g) defined at
fixed points of the theory such that aDV -aR> 0. Proved
rather generally (but hidden assumptions?)

m The strong a-theorem: There is a function a(g) which has
monotonic behaviour under RG flow. Gradient flow proved
except for monotonicity. Positive definiteness of G, easily
checked to lowest order=- valid perturbatively to all orders.
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In four dimensions the trace anomaly involves 3 curvature
invariants F, G, R?. It turns out that only the coefficient of G,
usually denoted a, is viable as a 4-dimensional equivalent for c.
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In two dimensions the c-function is derived from the coefficient
in the trace anomaly

VT, = —CcR...

In four dimensions the trace anomaly involves 3 curvature
invariants F, G, R?. It turns out that only the coefficient of G,
usually denoted a, is viable as a 4-dimensional equivalent for c.
In three dimensions there is no trace anomaly and therefore no
candidate for an a-function.
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The ¢ and a-theorems

In two dimensions the c-function is derived from the coefficient
in the trace anomaly

VT, = —CcR...

In four dimensions the trace anomaly involves 3 curvature
invariants F, G, R?. It turns out that only the coefficient of G,
usually denoted a, is viable as a 4-dimensional equivalent for c.
In three dimensions there is no trace anomaly and therefore no
candidate for an a-function.

Nevertheless we can show that 3-d theories do satisfy a
“gradient flow” equation with a positive definite metric at lowest
order.
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Trace anomaly

Theory with generic fields ¢: Conformal invariance: invariance
under local Weyl rescalings

Y = LX)y @ — QP(X)e.
To leading order we find

0S 0S
6S[e, Y] = /dd <5<p+ i 5wy> =0.

Using Lagrange equatlons = 0 we have
0S 5S
. =y, TH = —TH =0, THY — — .
Th 57#1/ T a 5'7,Lw
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Trace anomaly

Theory with generic fields ¢: Conformal invariance: invariance
under local Weyl rescalings

Y = LX)y @ — QP(X)e.
To leading order we find

0S 0S
6S[e, Y] = /dd <5<p+ i 5wy> =0.

Using Lagrange equatlons = 0 we have
0S 5S
. =y, TH = —TH =0, THY — — .
Th 57#1/ T a 5'7,Lw

For a scalar field ¢,

1
L= 342(v"0,00" ¢ — mP¢? — Re?)

needtotakemzzo,p:?%d,g:%_
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Trace anomaly

T+ agrees (for flat space) with alternative definition

oL
e
2(0,0) |

O = dt¢
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T+ agrees (for flat space) with alternative definition

oL
_ #VL.
2(0,0) |

O = dt¢

m In general TH, ©*" differ by total derivative.
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Trace anomaly

T+ agrees (for flat space) with alternative definition

oL
e
2(0,0) |

O = dt¢

m In general TH, ©*" differ by total derivative.
m TH¥ gives symmetric result (required by Einstein equation)
m ©H gives closer relation to “energy” and “momentum”.

In quantum theory define

9 , .
<Tu>= W, W=-inZ, Z- /d[¢]efsm_
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Trace anomaly

Expect scale dependence to be introduced at quantum level
through scale dependence of couplings so

0

< TH, >= -y —
g Yy

0
W=p-—=W=p30"
Bi ag/ Bi
However on curved space need additional counterterms

1 1
cgR— Q 2cgR+..., d9x|y|2 = Q%x|y|2
(in two dimensions) and
AgG+BgF + CgR?,

F =C""Cpyp — QU *F,

1
G = eope™ PR — QTG+

(in four dimensions) (C,.., is the conformal tensor.)
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Trace anomaly

These lead to additional contributions, so

< TH,>=B0"+cR+... (2-d)
=30 +aG+bF +CR? +... (4-d),

where ¢, a, b, ¢ are the S-functions corresponding to
Cs, Ag, Bg, Cp.
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Derivation of c-theorem

Extend to x dependent couplings g'(x) and consider
infinitesimal Weyl rescalings

Q=14+0(x), oV =20V

which are implemented by the operator

0
AJ = /deO' <27uu (5’}/ /BI >
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Derivation of c-theorem

Extend to x dependent couplings g'(x) and consider
infinitesimal Weyl rescalings

Q=1+4+0(x), oV =207

which are implemented by the operator

1) 1)
A, = /dZXa <2 y— + ! >

Acting on the vacuum energy functional W[y, 9], we get
A, W =— /d2X -y o (CR+ G,ﬂ“”@ug’&,g")

—Z/dzxx/—’y’y’“’f)uo W,o,9'
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Derivation of c-theorem
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Derivation of c-theorem

Group of local Weyl transformations is abelian:
[As, Ay ] =0

Using
§oR=—20R—2V% etc

implies consistency conditions

e =Tup’(9)
c=c+Wpl, Ty=aGy+oWw,—a,w,
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Chern-Simons theory

Chern-Simons theory: gauge theory in three dimensions
m Fractional statistics
m Quantum Hall effect
m High T, superconductivity

m AdS/CFT corrrespondence: superconformal N = 2
theories, e.g. BLG, ABJ models

Pure non-abelian Chern-Simons theory:

L= Je"PA2D,AS + Lef®Cc? ALADAS
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m With matter: no infinite counterterms for e and no
S-function—the gauge coupling does not run.
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Chern-Simons theory

Chern-Simons theory: gauge theory in three dimensions
m Fractional statistics
m Quantum Hall effect
m High T, superconductivity

m AdS/CFT corrrespondence: superconformal N = 2
theories, e.g. BLG, ABJ models

Pure non-abelian Chern-Simons theory:

L= Je"PA2D,AS + Lef®Cc? ALADAS

m Pure Chern-Simons theory (no matter) is topological and
the gauge coupling is quantised

m With matter: no infinite counterterms for e and no
S-function—the gauge coupling does not run.

m However there are finite corrections to e
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An explicit example

We start with a particular case of the abelian Chern-Simons
theory with matter:

L=3e"PA0,A, + |Dudjl? + ivh; Dy + ap e i
+ Bk dRSy + 37 (jbkdion + O kel o) — h(¢idp)°.
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An explicit example

We start with a particular case of the abelian Chern-Simons
theory with matter:

L=3e"PA0,A, + |Dudjl? + ivh; Dy + ap e i
+ Bk dRSy + 37 (jbkdion + O kel o) — h(¢idp)°.
The two-loop S-functions for this theory are given by
BB =(En+2)a®+ 8?8+ (8n+3) ap? + (n+2)8°
+ 1 Gn+ ) ar® + 3(n+2)8y% + 38262 + 112€?
— 2(20n + 31)ae* — 83e* — 8(n+ 2)€°,
8P =(8n+6) a5+ (3n+ ) ap?+ (2n+1) 2
+ %(n+ 2)av? + % (%n + %) By? — 3np2e?
+ H(n+2)7%e® — £(8n+31)pe*,
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An explicit example

B3 = (8n+6)aly + (6n+ %) afy + (§n+6) 52y
+ 2(n+1)7° + dayé?
+2(n+1)8y6* — §(2n — 5)ye*,
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An explicit example

B3 = (8n+6)aly + (6n+ %) afy + (§n+6) 52y
+ 2(n+1)7° + dayé?
+2(n+1)8y6* — §(2n — 5)ye*,

It is straightforward to show that the S-functions satisfy
DA ni1 0 %
BAl =11 n 0 2,
0,A 0 0 z(n+1) 32
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An explicit example

B3 = (8n+6)aly + (6n+ %) afy + (§n+6) 52y
+ 2(n+1)7° + dayé?
+2(n+1)8y6* — §(2n — 5)ye*,

It is straightforward to show that the S-functions satisfy

OuA n1 0 %)
BA| =1 n 0 2,
0, A 0 0 f(n+1)) \g@

(Note that the metric is positive definite!)

—_
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An explicit example

‘

(9% +26n 4 17)af? + S(n+1)ar?e® + H(n+ 1)282€
20n + 31)a?e* — 1(8n® + 31n+ 12)5%e*
(2n - 5)72e* — 2(20n + 31)ape* — 8n(n + 2)ae®.

WS WS =
—~ N
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General case

Use a general lagrangian
L=3e""PA,0,A, + |Dudjl? + ivh; Dy
+ kbt — Pigmnd' @ ¢4 6",
We can construct A®), A7) such that
d, AB) — g K 5/‘jk/(2) dy A7) — gpikimn 5uklmn
or schematically

d,A® =da'gyBl®, gy =y,
dhA(7) :dhagabﬁﬁ(z)a Gab = Oab-
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whatever the coefficients in 3(2)
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General case

Use a general lagrangian
L=3e""PA,0,A, + |Dudjl? + ivh; Dy
+ i jbidrdr — higmnd'¢ < ¢! oM.
We can construct A®), A7) such that
d, AB) — g K 5/‘jk/(2) dy A7) — gpikimn 5uklmn
or schematically
d,A®) =dalgpd®, gy = o,
dhA(7) :dhagabﬁﬁ(z)a Gab = Oab-

whatever the coefficients in 3(®)! h-dependent terms in A
lead to predictions for 4-loop h-dependent contributions to 5!
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General case
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General case

At higher orders one expects (if the gradient flow continues to
hold)

A, A7) = da!B® + da! TS 512)

—the leading order term determined by earlier calculation and
T,(JS) is unknown.
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—the leading order term determined by earlier calculation and
T,(JE') is unknown. In general = large set of equations =
consistency conditions on the 4-loop S-function coefficients (as
in 4 dimensions).
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in 4 dimensions). However there are some potential A-function
contributions which cannot “mix” with T,(JS) terms = simple
4-loop relations.
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General case

At higher orders one expects (if the gradient flow continues to
hold)

A AT = da! IO + da! TS 1@

—the leading order term determined by earlier calculation and
T,(JE') is unknown. In general = large set of equations =
consistency conditions on the 4-loop S-function coefficients (as
in 4 dimensions). However there are some potential A-function
contributions which cannot “mix” with T,(JS) terms = simple
4-loop relations. These all seem to be satisfied! Double poles
seem to be related in a similar diagrammatic way—maybe this
can be understood by looking at two-loop subdivergences.
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General case
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General case
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m Proof?: look at R¢? coefficient (dimensionless in arbitrary
dimensions)
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Open questions

m Proof?: look at R¢? coefficient (dimensionless in arbitrary

dimensions)
m Relation with “F-theorem” based on Free Energy
F = —InZ (i.e. Euclidean version of W?) as A-function.

“Strong” result established for particular theories and
general result at lowest order around conformal theories
(but §-function metric?)
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Open questions

m Proof?: look at R¢? coefficient (dimensionless in arbitrary

dimensions)
m Relation with “F-theorem” based on Free Energy
F = —InZ (i.e. Euclidean version of W?) as A-function.

“Strong” result established for particular theories and
general result at lowest order around conformal theories
(but §-function metric?)

m Topological understanding of 4-loop consistency relations?
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