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The c and a theorems

Consider a theory with couplings {gI}. The β-functions are
defined by

βI = µ
d

dµ
gI

β-functions describe how couplings change with energy scale;
derived from simple poles in counterterms (using dimensional
regularisation with d = 2− ε,4− ε, . . .).

The Zamolodchikov c-theorem (two dimensions) says that
there is a function c such that

∂Ic = GIJβ
J(g) or dgc ≡ dgI∂Ic = dgIGIJβ

J ,

so that
µ

d
dµ

c = βI∂Ic = GIJβ
IβJ ,

where GIJ is a positive definite metric.
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The c and a theorems

c decreases towards the IR (counts d. o. f?).
Fixed-point value c∗ satisfies c∗

UV − c∗
IR > 0

The c-theorem constrains coupling flows in parameter
space (irreversibility, no cyclic flows).

The a-theorem is the proposed generalisation to four
dimensions of the c-theorem. Two possible versions:

The weak a-theorem: There is a function a(g) defined at
fixed points of the theory such that a∗

UV − a∗
IR > 0. Proved

rather generally (but hidden assumptions?)
The strong a-theorem: There is a function a(g) which has
monotonic behaviour under RG flow. Gradient flow proved
except for monotonicity. Positive definiteness of GIJ easily
checked to lowest order⇒ valid perturbatively to all orders.
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The c and a-theorems

In two dimensions the c-function is derived from the coefficient
in the trace anomaly

γµνTµν = −cR . . .

In four dimensions the trace anomaly involves 3 curvature
invariants F , G, R2. It turns out that only the coefficient of G,
usually denoted a, is viable as a 4-dimensional equivalent for c.
In three dimensions there is no trace anomaly and therefore no
candidate for an a-function.
Nevertheless we can show that 3-d theories do satisfy a
“gradient flow” equation with a positive definite metric at lowest
order.
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Trace anomaly

Theory with generic fields ϕ: Conformal invariance: invariance
under local Weyl rescalings

γµν → Ω2(x)γµν , ϕ→ Ω2p(x)ϕ.

To leading order we find

δS[ϕ, γµν ] =

∫
ddx

(
δS
δϕ
δϕ+

δS
δγµν

δγµν

)
= 0.

Using Lagrange equations δS
δϕ = 0 we have

γµν
δS
δγµν

= −γµνTµν = −Tµ
µ = 0, Tµν = − δS

δγµν
.

For a scalar field φ,

L = 1
2 |γ|

1
2 (γµν∂µφ∂

νφ−m2φ2 − ξRφ2)

need to take m2 = 0, p = 2−d
4 , ξ = d−2

4(d−1) .
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Trace anomaly

Tµν agrees (for flat space) with alternative definition

Θµν = ∂µφ
∂L

∂(∂νφ)
− γµνL.

In general Tµν , Θµν differ by total derivative.
Tµν gives symmetric result (required by Einstein equation)
Θµν gives closer relation to “energy” and “momentum”.

In quantum theory define

< Tµν >=
∂

∂γµν
W , W = −i ln Z , Z =

∫
d [φ]eiS[φ].
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Trace anomaly

Expect scale dependence to be introduced at quantum level
through scale dependence of couplings so

< Tµ
µ >= −γµν ∂

∂γµν
W = βI

∂

∂gI W ≡ βIOI .

However on curved space need additional counterterms

cBR → Ω−2cBR + . . . , ddx |γ|
1
2 → Ωdddx |γ|

1
2

(in two dimensions) and

ABG+BBF + C̃BR2,

F =CµνσρCµνσρ → Ω−4F ,

G =
1
4
εµνσρε

αβγδRµν
αβRσρ

γδ → Ω−4G + . . .

(in four dimensions) (Cµνσρ is the conformal tensor.)
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Trace anomaly

These lead to additional contributions, so

< Tµ
µ >=βIOI + cR + . . . (2− d)

=βIOI + aG + bF + c̃R2 + . . . (4− d),

where c,a,b, c̃ are the β-functions corresponding to
cB,AB,BB, C̃B.
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Derivation of c-theorem

Extend to x dependent couplings gI(x) and consider
infinitesimal Weyl rescalings

Ω = 1 + σ(x), δσγµν = 2σ γµν

which are implemented by the operator

∆σ =

∫
d2x σ

(
2γµν

δ

δγµν
+ βI δ

δgI

)

Acting on the vacuum energy functional W [γµν ,gI ], we get

∆σ W =−
∫

d2x
√
−γ σ

(
cR + GIJγ

µν∂µgI∂νgJ
)

− 2
∫

d2x
√
−γ γµν∂µσ WI∂νgI
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Derivation of c-theorem

Group of local Weyl transformations is abelian:[
∆σ,∆σ′

]
= 0

Using
δσR = −2σR − 2∇2σ etc

implies consistency conditions

∂I c̃ =TIJβ
J(g)

c̃ = c + WIβ
I , TIJ = GIJ + ∂IWJ − ∂JWI
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Chern-Simons theory

Chern-Simons theory: gauge theory in three dimensions
Fractional statistics
Quantum Hall effect
High Tc superconductivity
AdS/CFT corrrespondence: superconformal N = 2
theories, e.g. BLG, ABJ models

Pure non-abelian Chern-Simons theory:

L = 1
2ε
µνρAa

µ∂νAa
ρ + 1

6ef abcεµνρAa
µAb

νAc
ρ

Pure Chern-Simons theory (no matter) is topological and
the gauge coupling is quantised
With matter: no infinite counterterms for e and no
β-function–the gauge coupling does not run.
However there are finite corrections to e
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An explicit example

We start with a particular case of the abelian Chern-Simons
theory with matter:

L =1
2ε
µνρAµ∂νAρ + |Dµφj |2 + iψjD̂ψj + αψjψjφ

∗
kφk

+ βψjψkφ
∗
kφj + 1

4γ(ψjψ
∗
kφjφk + ψ

∗
j ψkφ

∗
j φ

∗
k )− h(φ∗j φj)

3.

The two-loop β-functions for this theory are given by

β(2)α =
(8

3n + 2
)
α3 + 16

3 α
2β +

(8
3n + 3

)
αβ2 + (n + 2)β3

+ 1
4

(8
3n + 17

3

)
αγ2 + 3

4(n + 2)βγ2 + 3β2e2 + 1
4γ

2e2

− 2
3(20n + 31)αe4 − 8βe4 − 8(n + 2)e6,

β
(2)
β =

(8
3n + 6

)
α2β +

(
3n + 16

3

)
αβ2 +

(2
3n + 1

)
β3

+ 3
4(n + 2)αγ2 + 1

4

(8
3n + 17

3

)
βγ2 − 3nβ2e2

+ 1
4(n + 2)γ2e2 − 2

3(8n + 31)βe4,
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An explicit example

β(2)γ =
(8

3n + 6
)
α2γ +

(
6n + 34

3

)
αβγ +

(8
3n + 6

)
β2γ

+ 1
6(n + 1)γ3 + 4αγe2

+ 2(n + 1)βγe2 − 2
3(2n − 5)γe4,

It is straightforward to show that the β-functions satisfy∂αA
∂βA
∂γA

 =

n 1 0
1 n 0
0 0 1

4(n + 1)


β

(2)
α

β
(2)
β

β
(2)
γ

 ,

(Note that the metric is positive definite!)
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An explicit example

where

A =n
4

(8
3n + 2

)
α4 + 1

6

(
n2 + 3n + 3

)
β4 + 1

96(n + 1)2γ4

+
(8

3n + 2
)
α3β + 1

3(3n2 + 8n + 3)β3α + (1− n2)β3e2

+ 1
3(4n2 + 9n + 8)α2β2 + 1

12(4n + 9)(n + 1)(α2 + β2)γ2

+ 1
12(9n2 + 26n + 17)αβγ2 + 1

2(n + 1)αγ2e2 + 1
4(n + 1)2βγ2e2

− n
3 (20n + 31)α2e4 − 1

3(8n2 + 31n + 12)β2e4

− n
3 (2n − 5)γ2e4 − 2

3(20n + 31)αβe4 − 8n(n + 2)αe6.

with Tim Jones and Colin Poole AN a-THEOREM IN THREE DIMENSIONS?



General case

Use a general lagrangian

L =1
2ε
µνρAµ∂νAρ + |Dµφj |2 + iψjD̂ψj

+ αijklψjψjφ
∗
kφl − hijklmnφ

iφjφkφlφmφn.

We can construct A(5), A(7) such that

dαA(5) = dαijklβ ijkl(2)
α dhA(7) = dhijklmnβ

ijklmn(2)
h

or schematically

dαA(5) =dαIgIJβ
J(2)
α , gIJ = δIJ ,

dhA(7) =dhagabβ
b
h(2), gab = δab.

whatever the coefficients in β(2)! h-dependent terms in A(7)

lead to predictions for 4-loop h-dependent contributions to βα!
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General case

At higher orders one expects (if the gradient flow continues to
hold)

dαA(7) = dαIβI(4)
α + dαIT (5)

IJ βI(2)
α

–the leading order term determined by earlier calculation and
T (5)

IJ is unknown.

In general⇒ large set of equations⇒
consistency conditions on the 4-loop β-function coefficients (as
in 4 dimensions). However there are some potential A-function
contributions which cannot “mix” with T (5)

IJ terms⇒ simple
4-loop relations. These all seem to be satisfied! Double poles
seem to be related in a similar diagrammatic way–maybe this
can be understood by looking at two-loop subdivergences.
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Open questions

Proof?: look at Rφ2 coefficient (dimensionless in arbitrary
dimensions)
Relation with “F -theorem” based on Free Energy
F = − ln Z (i.e. Euclidean version of W?) as A-function.
“Strong” result established for particular theories and
general result at lowest order around conformal theories
(but δ-function metric?)
Topological understanding of 4-loop consistency relations?
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