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1. Basics  
  -Effective Theory Approach 
  -2HDMs 
2. Work 
! Flavor phenomenology of 2HDMs 
  -B->Xs(d)γ  
  -B->(D(*))τν and dn        
  -Upper limits on Bs,d->μe 
  -Correlation between μ->eγ 
   and μ->3e 
  -Summary of the constraints 
3. Conclusions 
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Effective Field Theory 
!  ET is the theory valid (good) up to some energy scales.  

!  Applied to Feynman diagrams it means studying the 
dynamics of the diagram(s) after integrating out the heavy 
DOF.  

- Formally performed within the concept of Operator 
Product Expansion (OPE) introduced by Wilson in 1969.  

- Physics describing short distance effects are absorbed in 
the so-called Wilson coefficients Ci’s, while low energy 
effects are hidden in matrix el. of effective operators Oi’s. 

e.g. Consider the tree-level b->cdu transition: 

Euler-Heisenberg (ET of QED-100MeV), Fermi (ET of Weak 
int.-90GeV), ChPT (ET of QCD-1Gev) or even SM (ET of a 
more fund. theory?-1Tev).  

Examples:  
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SM Eff. th. 

The SM Amplitude: 

q≈O(mb)<<mW, expand in q2/mW
2 ; 

-> series of local operators with ascending mass dim: 
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SM Eff. th. 

The SM Amplitude: 

Effective Amplitude: 

. 
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q≈O(mb)<<mW, expand in q2/mW
2 ; 

-> series of local operators with ascending mass dim: 
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"  Matching procedure 

  e.g. consider the quark-level b->sγ decay at LO in QCD: 

O7 

b s 
γ 

SM Eff. theory a) b) 

Idea: Calculating a particular process both on the full and 
ET side then extracting Ci’s by confronting both results. 

•  Calculation on the full theory side: 

Acc. to HME rules by V.A. Smirnov’94 two type of diags to 
calculate; a) and b)   

-Diag with u-quark is prop. to VubVus
* and as |VubVus

*|<< |VtbVts
*| 

it can be safely neglected.   
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Diagram a)- top and charm contributions 

- for t-quark propagators simply make the expansion (also  
for ps)  

Diagram b)- charm-loop 
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- for c-quark propagators additional expansion in mc  
(i.e mc=0). 

-  treat k as an external momentum and expand the W 
propagator as 
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we are then left with 
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α (q2γμ-qqμ)εμ = 0 

- Hence, the complete SM amplitude reads    

where x=mt
2/mW

2 . 

•  Calculation on the ET side: 
- at the LO in QCD O7 is the only operator cont. to b->sγ. 
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b s 

γ 
c 

which just vanishes for an on-shell photon (q2=0)! 
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- Decomposing the σμνFμν structure in O7 gives:    

- requiring Aeff=Afull completes the matching and fixes C7 as:    

✓ 
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Two Higgs doublet models 
SM: one Higgs doublet Φ 

charged component of Φ becomes the 
long. component of W 

neutral CP-odd component of Φ 
becomes the long. component of Z 

only one physical Higgs (neutral CP-even) 

2HDMs: Hu and Hd 
-five physical Higgses: h0,H0, A0, H±  (CP consv. Higgs potential) 

type-I: Hu couples to up and down-type quarks, Hd does not couple to 
fermions. 
type-II: Hu couples to up and Hd to down-type quarks. 

type-III: both Hu and Hd couple to both type of quarks. 

lepton specific, flipped, inert or Aligned [Pich,Tuzon’09] 2HDM etc… 

(FCNCs at tree-level) 

-1st formulation by T.D. Lee in 1973: motivation to find extra 
sources of CP violation. 
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(MSSM at tree-level) 
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MSSM like Higgs potential: 

and  vu/vd=tanβ.  

minimization of (*) gives:  

(*) 
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with λ1=g2, λ2=g2+g’2 ,   

Scalar masses: work out the quadratic + mixing terms in V 

Guage boson masses: follow from the kinetic terms in the 
Lagrangian. 
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Scalar mass terms: 

Gauge bosons mass terms (vu
2+vd

2=v2=(174GeV)2): 

-Also, one can obtain the following relation between α and β: 

- for -π/2<α<0, 0<β<π/2, large tanβ and v<<mA0: 
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-flavor viol. (beyond type-II) is entirely governed by εijf. 

main task is to constrain εijf. 

εijf couplings: (H0,h0,A0) 
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-Yukawa Lag. of of type-III model in physical basis: 

tanβ, mH and εijf ! 

FCNCs at tree-level! 
(**) 

# Eq. (**) defines: 
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o  “Explaining B->(D(*))τν in a 2HDM of type III” 

o  “Flavor phenomenology of 2HDMs with generic           
Yukawa structure”  

o  Phys. Rev. D86, 054014, 2012 
o  Phys. Rev. D87, 094031, 2013 

Crivellin, Greub and A.K. 
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B->τν 

B->Xsγ 

B->Dτν 

Bs->μμ 

B->D*τν 

K->μν/π->μν 

Updated constraints on 2HDM II 

!  Allowed 2σ regions 
 (+ th. uncertainties superimposed) 
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B->τν 

B->Xsγ 

B->Dτν 

Bs->μμ 

B->D*τν 

K->μν/π->μν 

Updated constraints on 2HDM II 

"  Tension from B->D*τν ! 
"  The current best lower bound on the charged Higgs mass 
(from B->Xsγ) is mH>360 GeV [Hermann,Misiak,Steinhauser’12]. 

!  Allowed 2σ regions 
 (+ th. uncertainties superimposed) 
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B->Xsγ  in 2HDM III 

mH=300 GeV 

mH=500 GeV 

mH=700 GeV 

tanβ=30 

"  stringent constraints on εu23, while loose ones on εu32!  

B->Xsγ (εu23)  

[Babar+Belle Av. ‘12]  

[Greub, Gorbahn, Misiak et al. ‘07 -NNLO] 

require: SM + 2HDM-III lies within 2σ experimental range + th. uncertainty  

!  Allowed regions 
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B->Xdγ  in 2HDM III 

mH=300 GeV 

mH=500 GeV 

mH=700 GeV 

tanβ=30 

B->Xdγ (εu13)   

[Babar CP Av. ‘11]  

[Crivellin et al. ’11-NLL] 

!  Allowed regions 
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demand: SM + 2HDMIII lies within 2σ experimental range + th. uncertainty  
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Tauonic B decays and dn  

BABAR ’13 meas. SM pred. [Aubert et al. ’12] 

"  2σ for R(D) and 2.7σ for R(D*). Combined 3.4σ dev. from the SM! 

BABAR+BELLE ’12 Av. SM pred. [Charles et al. ’05] 

"  Disagrees with SM pred. by 1.6σ using Vub from global fit! 

 evidence for LFU violation -> which model of NP to explain? 

- 2HDM II is not capable of removing these tensions! (destructive 
interference with SM for B->τν and cannot simultaneously satisfy R(D) and R(D*).)  

•  NP in B mixing (bigger values for Vub) 

•  2HDM-III with flavor viol. in the up sector 

•  RH W-couplings etc. 
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Possibilities: 
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"  We propose searches for A0,H0->tc(u) or t->h0c(u) at the LHC to 
test the model. 

[Crivellin, Greub and AK] 
(PRD 86, 054014, 2012) 

--> related work is in progress! 

"  R(D) and R(D*) can simultaneously be explained by εu32. 

"  Also, B->τν can be brought into agreement with exp. using εu31.     

type-III 2HDM 

2HDM III 
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"  Explaining the (slight) discrepancy in B->τν by εd33 
violates Naturalness criterion! 
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LFV transitions  
$  Neutral meson decays: Bs,d->μe (Bs,d->τμ, Bs,d->τe) 

- In the SM (massless neutrinos) Br’s of these decays are zero! 

- In the 2HDM-II they are also not possible (no FCNH interactions)! 

- In the 2HDM-III they are possible if εlij≠0, and even a tree-level 
neutral Higgs contribution exist when also εd32,23≠0 (εd31,13≠0).   

- for large tanβ and v<<mH we obtain: [Crivellin, Greub and AK] 

(PRD 87, 094031, 2013) 

with 

Upper limits in 2HDM-III 

-biggest allowed values for |εd32,23| (|εd31,13|) from Bs(d)->μ+μ- 

-biggest allowed values for |εl21,12| from μ->eγ 

-biggest allowed values for |εl32,23| (|εl31,13|) from τ->3μ (τ->eμ+μ-) 

respecting these bounds we obtain: 
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tanβ=30 (yellow), tanβ=40 (red), tanβ=50 (blue) 
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$  Correlations among li->lfγ and li-->lf-lj+lj-   

-In the 2HDM-III for large tanβ and v<<mH one has 

- for very large mH, the expression reduces to (when εljj/εlii=mlj/mli)  

- for light mH values, the expression gets modified as (for the 2->1 case): 

Predicted ratio in  
     2HDM-III 

εl21≠0, εl12=0 
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Summary of the constraints 
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-for the benchmark point of tanβ=50 and mH=500 GeV. 

-Combining the constraints from Table-I and II we obtain 
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%  Type-II 2HDM is not capable of explaining the 2012 exp. 
data on the tauonic B decays. 

%  In the general 2HDM (of type III) it is possible to explain  
   B->(D(*))τν simultaneously without fine-tuning. 

%  In the 2HDM-III all the epsilon parameters except εu22,32,33  
   are found to be small. 

%  2HDM-III provides stringent upper limits for LFV neutral  
B-meson decays. 

%  Interesting correlations exist in 2HDM-III among the LFV 
radiative lepton decays and the 3-body LFV lepton decays. 

%  Searches for A0,H0->tc(u) at the LHC can test the model.  
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Back-up slides 
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Explicit form (MSSM like):  

Couplings defining the Higgs-fermion interactions (type-III):  

Higgs Potential in 2HDMs 
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The covariant derivative is defined to be 

Dμ= 
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Diagonalization via orthogonal matrices #field trans. of the form: 

# The physical (h0,H0,A0,H±) and GB (G0,G±) mass eigenstates: 
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Higgs mass terms in 2HDMs 
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Explicit expressions for tauonic B-decays 
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t’ Hooft’s naturalness criterion 

for large tanβ limit and mq(500GeV) 
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Wave func. rotations to arrive at phys. basis with diag. quark mass matrices 

CKM matrix 
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Upper limits in type-III 2HDM 
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tanβ=30 (yellow), tanβ=40 (red), tanβ=50 (blue) 
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Updated values and plots 

    Br[Bs->μμ] = 2.9+1.1
-1.0×10-9     95% CL, LHCb’July13 

Br[Bd->μμ] < 7.4×10-10     95% CL, LHCb’July13 

Br[Bs->μe] < 1.4×10-8     95% CL, LHCb’July13 

Br[Bd->μe] < 3.7×10-9     95% CL, LHCb’July13 

The gray region is excluded  
by experiment. 
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Predicted ratio in 2HDM-III 
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- The behavior of 3->1 transitions is very similar to 3->2 transitions shown 
here. 
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