Charged Higgs effects in Tauonic B decays and 2HDMs phenomenology

Ahmet KOKULU

Department of Mathematical Sciences, University of Liverpool

in collaboration with

Ch. Greub (Bern U, AEC) and A. Crivellin (CERN, Theory division)

November 12, 2014

PLAN OF THE TALK

Effective Field Theory

□ ET is the theory valid (good) up to some energy scales.

□ Applied to Feynman diagrams it means studying the dynamics of the diagram(s) after integrating out the heavy DOF.

- Formally performed within the concept of Operator Product Expansion (OPE) introduced by Wilson in 1969.

- Physics describing short distance effects are absorbed in the so-called Wilson coefficients C_i 's, while low energy effects are hidden in matrix el. of effective operators O_i 's.

Examples:

Euler-Heisenberg (ET of QED-100MeV), Fermi (ET of Weak int.-90GeV), ChPT (ET of QCD-1Gev) or even SM (ET of a more fund. theory?-1Tev).

e.g. Consider the tree-level b->cdū transition:

The SM Amplitude:

$$\mathcal{A}_{\rm SM} = -i \left(\frac{-ig_2}{\sqrt{2}}\right)^2 V_{cb} V_{ud}^* \frac{g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{m_W^2}}{q^2 - m_W^2} \left(\bar{d}\gamma_{\mu}Lu\right) (\bar{c}\gamma_{\nu}Lb)$$

$$q\approx 0(m_b) << m_w, \text{ expand in } q^2/m_W^2; \quad \frac{g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{m_W^2}}{q^2 - m_W^2} = -\frac{g^{\mu\nu}}{m_W^2} + \mathcal{O}\left(\frac{q^2}{m_W^4}\right)$$

-> series of local operators with ascending mass dim:

$$\mathcal{A}_{\mathrm{SM}} = rac{-ig_2^2}{2} V_{cb} V_{ud}^* \left[rac{1}{m_W^2} \underbrace{\left(\overline{d} \gamma_\mu L u
ight) \left(\overline{c} \gamma^\mu L b
ight)}_{ ext{dim-6 operator}} + rac{1}{m_W^4} \underbrace{\left(\dots \dots \right)}_{ ext{dim-8 operator}} + \dots
ight]$$

The SM Amplitude:

$$\mathcal{A}_{\rm SM} = -i \left(\frac{-ig_2}{\sqrt{2}}\right)^2 V_{cb} V_{ud}^* \frac{g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{m_W^2}}{q^2 - m_W^2} \left(\bar{d}\gamma_{\mu}Lu\right) (\bar{c}\gamma_{\nu}Lb)$$

$$q \approx O(m_b) << m_W, \text{ expand in } q^2/m_W^2; \quad \frac{g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{m_W^2}}{q^2 - m_W^2} = -\frac{g^{\mu\nu}}{m_W^2} + \mathcal{O}\left(\frac{q^2}{m_W^4}\right)$$

-> series of local operators with ascending mass dim:

$$\mathcal{A}_{\mathrm{SM}} = rac{-ig_2^2}{2} V_{cb} V_{ud}^* \left[rac{1}{m_W^2} \underbrace{\left(\overline{d} \gamma_\mu L u
ight) \left(\overline{c} \gamma^\mu L b
ight)}_{ ext{dim-6 operator}} + rac{1}{m_W^4} \underbrace{\left(rac{\dots,\dots,\dots}{ ext{dim-8 operator}} + \dots
ight]}_{ ext{dim-8 operator}} + \dots
ight]$$

$$\mathcal{A}_{\rm SM} = -i \left(\frac{-ig_2}{\sqrt{2}}\right)^2 V_{cb} V_{ud}^* \frac{g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{m_W^2}}{q^2 - m_W^2} \left(\bar{d}\gamma_{\mu}Lu\right) (\bar{c}\gamma_{\nu}Lb)$$

$$\approx O(m_b) << m_W, \text{ expand in } q^2/m_W^2; \quad \frac{g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{m_W^2}}{q^2 - m_W^2} = -\frac{g^{\mu\nu}}{m_W^2} + \mathcal{O}\left(\frac{q^2}{m_W^4}\right)$$

-> series of local operators with ascending mass dim:

$$\mathcal{A}_{\rm SM} = \frac{-ig_2^2}{2} V_{cb} V_{ud}^* \left[\frac{1}{m_W^2} \underbrace{\left(\bar{d} \gamma_\mu Lu \right) \left(\bar{c} \gamma^\mu Lb \right)}_{\text{dim-6 operator}} + \frac{1}{m_W^4} \underbrace{\left(\dots, \dots, \right)}_{\text{dim-8 operator}} + \dots \right]$$

Effective Amplitude:

$$\mathcal{A}_{\rm eff} = \frac{-ig_2^2}{2} V_{cb} V_{ud}^* \frac{1}{m_W^2} \left(\bar{d} \gamma_\mu Lu \right) \left(\bar{c} \gamma^\mu Lb \right)$$
A. Kokulu (University of Liverpool)

> Matching procedure

Idea: Calculating a particular process both on the full and ET side then extracting C_i 's by confronting both results.

e.g. consider the quark-level b->sy decay at LO in QCD:

-Diag with u-quark is prop. to $V_{ub}V_{us}^*$ and as $|V_{ub}V_{us}^*| \ll |V_{tb}V_{ts}^*|$ it can be safely neglected.

• Calculation on the full theory side:

Acc. to HME rules by V.A. Smirnov'94 two type of diags to calculate; a) and b)

Diagram a) - top and charm contributions

- for t-quark propagators simply make the expansion (also for $p_{\rm s})$

$$\frac{1}{(k+p_b)^2 - m_t^2} = \frac{1}{k^2 - m_t^2} \sum_{n \ge 0} \left(-\frac{p_b^2 + 2kp_b}{k^2 - m_t^2} \right)^n$$

- for c-quark propagators additional expansion in m_c (i.e mc=0).

Diagram b)- charm-loop

- treat k as an external momentum and expand the W propagator as

$$rac{1}{k^2-m_W^2} = -rac{1}{m_W^2} \left[1 + rac{k^2}{m_W^2} + \mathcal{O}\left(rac{1}{m_W^4}
ight)
ight]$$

Diagram a) - top and charm contributions

- for t-quark propagators simply make the expansion (also for $p_{\rm s})$

$$\frac{1}{(k+p_b)^2 - m_t^2} = \frac{1}{k^2 - m_t^2} \sum_{n \ge 0} \left(-\frac{p_b^2 + 2kp_b}{k^2 - m_t^2} \right)^n$$

- for c-quark propagators additional expansion in m_c (i.e mc=0).

Diagram b)- charm-loop

- treat k as an external momentum and expand the W propagator as

$$\frac{1}{k^2 - m_W^2} = -\frac{1}{m_W^2} \left[1 + \frac{k^2}{m_W^2} + \mathcal{O}\left(\frac{1}{m_W^4}\right) \right]$$

we are then left with

which just vanishes for an on-shell photon $(q^2=0)!$

-Hence, the complete SM amplitude reads

$$\mathcal{A}_{\text{full}} = i \frac{4G_F \lambda_t}{\sqrt{2}} \frac{e}{16\pi^2} \underbrace{\frac{x}{24} \left[\frac{-8x^3 + 3x^2 + 12x - 7 + (18x^2 - 12x)\ln(x)}{(x-1)^4} \right]}_{(x-1)^4}$$

× $\bar{u}(p_s)2\left[R(\not\epsilon(q)(m_b^2+m_s^2)-2m_b p_b.\epsilon(q))+L(2m_b m_s \not\epsilon(q)-2m_s p_b.\epsilon(q))\right]u(p_b)$ where $x=m_t^2/m_w^2$.

· Calculation on the ET side:

-at the LO in QCD O_7 is the only operator cont. to b->sy.

$$\mathcal{A}_{\text{eff}} = \frac{4iG_F \lambda_t}{\sqrt{2}} C_7 \langle s\gamma | \mathcal{O}_7 | b \rangle$$
$$\mathcal{O}_7 = \frac{e}{16\pi^2} \left(\bar{s}\sigma^{\mu\nu} \left[\bar{m}_b R + \bar{m}_s L \right] b \right) F_{\mu\nu}$$

-Decomposing the $\sigma_{\mu\nu}F^{\mu\nu}$ structure in O_7 gives:

$$\begin{aligned} \mathcal{A}_{\text{eff}} &= \frac{4iG_F \,\lambda_t}{\sqrt{2}} \, C_7 \langle s\gamma | \mathcal{O}_7 | b \rangle = \frac{4iG_F C_7 \,\lambda_t}{\sqrt{2}} \frac{e}{16\pi^2} \\ &\times \quad \bar{u}(p_s) 2 \left[R(\not \epsilon(q)(m_b^2 + m_s^2) - 2m_b \, p_b.\epsilon(q)) + L \left(2m_b m_s \not \epsilon(q) - 2m_s \, p_b.\epsilon(q) \right) \right] u(p_b) \end{aligned}$$

-requiring A_{eff}=A_{full} completes the matching and fixes C7 as:

$$C_7 = \frac{x}{24} \left[\frac{-8x^3 + 3x^2 + 12x - 7 + (18x^2 - 12x)\ln(x)}{(x-1)^4} \right]$$

MSSM Like Higgs potential:

$$V(H_u, H_d) = m_{H_d}^2 |H_d|^2 + m_{H_u}^2 |H_u|^2 + \frac{\lambda_1}{2} \left(H_d^{\dagger} H_u \right) \left(H_u^{\dagger} H_d \right) + \frac{\lambda_2}{8} \left(|H_u|^2 - |H_d|^2 \right)^2 \\ + \left(b \left(\epsilon^T H_d^{\star} \right)^{\dagger} H_u + \text{h.c.} \right), \quad \text{with } \lambda_1 = 9^2, \ \lambda_2 = 9^{2+} 9^{\prime 2}, \qquad (*)$$

$$H_{d} = \begin{pmatrix} H_{d}^{1} \\ H_{d}^{2} \end{pmatrix} = \begin{pmatrix} v_{d} + H_{d}^{0} \\ H_{d}^{-} \end{pmatrix} \text{ with } H_{d}^{0} = \rho_{d} + i\eta_{d},$$

$$H_{u} = \begin{pmatrix} H_{u}^{1} \\ H_{u}^{2} \end{pmatrix} = \begin{pmatrix} H_{u}^{+} \\ v_{u} + H_{u}^{0} \end{pmatrix} \text{ with } H_{u}^{0} = \rho_{u} + i\eta_{u}$$

and $v_{u}/vd=tan\beta.$

minimization of (*) gives:

$$m_{H_u}^2 = b rac{v_d}{v_u} + rac{\lambda_2}{4} \left(v_d^2 - v_u^2
ight) \;, \;\; m_{H_d}^2 = b rac{v_u}{v_d} + rac{\lambda_2}{4} \left(v_u^2 - v_d^2
ight)$$

<u>Scalar masses</u>: work out the quadratic + mixing terms in V

<u>Guage boson masses</u>: follow from the kinetic terms in the Lagrangian.

Scalar mass terms:

$$egin{array}{rll} m_{H^\pm}^2&=&rac{2b}{\sin2eta}+rac{\lambda_1v^2}{2}, &m_{G^\pm}^2=0, &m_{A^0}^2=rac{2b}{\sin2eta}, &m_{G^0}^2=0\,, \ m_{H^0,h^0}^2&=&rac{1}{2}\left(m_{A^0}^2+rac{\lambda_2v^2}{2}\pm\sqrt{\left(m_{A^0}^2-\lambda_2v^2/2
ight)^2+2\lambda_2v^2m_{A^0}^2\sin^22eta}
ight) \end{array}$$

Gauge bosons mass terms $(v_u^2 + v_d^2 = v^2 = (174 \text{ GeV})^2)$:

$$m_W^2 = rac{g^2(v_u^2+v_d^2)}{2}, \hspace{0.5cm} m_Z^2 = rac{(g^2+g'^2)(v_u^2+v_d^2)}{2}, \hspace{0.5cm} m_\gamma^2 = 0$$

-Also, one can obtain the following relation between α and β :

$$an\left(2lpha
ight) = rac{m_{A^0}^2 + m_Z^2}{m_{A^0}^2 - m_Z^2} \, an\left(2eta
ight) = rac{m_{H^0}^2 + m_{h^0}^2}{m_{A^0}^2 - m_Z^2} \, an\left(2eta
ight)$$

- for $-\pi/2<\alpha<0$, $0<\beta<\pi/2$, large tanß and $v<<m_{AO}$:

 $anetapprox -\cotlpha\,, \ m_{H^0}pprox m_{H^\pm}pprox m_{A^0}\,\equiv m_H$

-Yukawa Lag. of of type-III model in physical basis:

$$\mathcal{L}_{Y} = - \bar{d}_{fL} \left[\left(\frac{m_{d_{i}}}{v_{d}} \delta_{fi} - \epsilon_{fi}^{d} \tan \beta \right) H_{d}^{0*} + \epsilon_{fi}^{d} H_{u}^{0} \right] d_{iR} \qquad \text{tan}\beta, \ m_{H} \text{ and } \epsilon_{ij}^{f} !$$

$$(**) \quad - \bar{u}_{fL} \left[\left(\frac{m_{u_{i}}}{v_{u}} \delta_{fi} - \epsilon_{fi}^{u} \cot \beta \right) H_{u}^{0*} + \epsilon_{fi}^{u} H_{d}^{0} \right] u_{iR} \\ + \bar{u}_{fL} V_{fj} \left[\frac{m_{d_{i}}}{v_{d}} \delta_{ji} - (\cot \beta + \tan \beta) \epsilon_{ji}^{d} \right] H_{d}^{2*} d_{iR} \\ + \bar{d}_{fL} V_{jf}^{*} \left[\frac{m_{u_{i}}}{v_{u}} \delta_{ji} - (\tan \beta + \cot \beta) \epsilon_{ji}^{u} \right] H_{u}^{1*} u_{iR} + h.c. . \\ \rightarrow \text{Eq. } (**) \text{ defines:} \\ \frac{\epsilon_{ij}!}{p_{ij}!} \frac{f \text{ couplings:}}{v_{ij}!} u_{ij}^{dew} + v_{u} \epsilon_{ij}^{dew}, \\ m_{ij}^{u} = v_{d} Y_{ij}^{dew} + v_{u} \epsilon_{ij}^{dew}, \\ m_{ij}^{u} = v_{d} Y_{ij}^{ew} + v_{u} \epsilon_{ij}^{ew}. \qquad q_{i} \qquad q_{f} \qquad d_{i} \qquad u_{f} \\ i \left(\Gamma_{u,d}^{LR} H_{e}^{v} P_{R} + \Gamma_{q/q}^{RL} H_{e}^{V} P_{L} \right) \qquad i \left(\Gamma_{u,d}^{LR} H_{e} - F_{RL} + \Gamma_{u/d_{i}}^{RL} - F_{L} \right) \\ -\text{flavor viol. (beyond type-II) is entirely governed by } \epsilon_{ij}^{f}. \end{array}$$

main task is to constrain ε_{ij}^{f} .

Flavor phenomenology of 2HDMs

• "Explaining $B \rightarrow (D^{(*)}) TV$ in a 2HDM of type III" • "Flavor phenomenology of 2HDMs with generic Yukawa structure"

Updated constraints on 2HDM II

> stringent constraints on ε_{23}^{u} , while loose ones on ε_{32}^{u} !

B->X_sγ (ε^u₂₃)

 $\mathcal{B}[B \to X_s \gamma]|_{E_{\gamma} > 1.6 \,\text{GeV}}^{\text{exp}} = (3.43 \pm 0.21 \pm 0.07) \times 10^{-4}$ [Babar+Belle Av. '12] $\mathcal{B}[B \to X_s \gamma]^{\text{SM}} = (3.15 \pm 0.23) \times 10^{-4}$ [Greub, Gorbahn, Misiak et al. '07 -NNL0]

require: SM + 2HDM-III lies within 20 experimental range + th. uncertainty

B->X_dγ (ε⁴13)

 $\mathcal{B} [B \to X_d \gamma]|_{E_{\gamma} > 1.6 \,\text{GeV}}^{\text{exp}} = (1.41 \pm 0.57) \times 10^{-5} \text{ [Babar CP Av. '11]}$ $\mathcal{B} [B \to X_d \gamma]|_{E_{\gamma} > 1.6 \,\text{GeV}}^{\text{SM}} = (1.54^{+0.26}_{-0.31}) \times 10^{-5} \text{ [Crivellin et al. '11-NLL]}$

demand: SM + 2HDMIII lies within 20 experimental range + th. uncertainty

Tauonic B decays and d
 $\mathcal{R}(D^{(*)}) = \mathcal{B}(B \to D^{(*)}\tau\nu)/\mathcal{B}(B \to D^{(*)}\ell\nu)$ BABAR '13 meas.SM pred. [Aubert et al. '12] $\mathcal{R}(D) = 0.440 \pm 0.058 \pm 0.042$, $\mathcal{R}_{SM}(D) = 0.297 \pm 0.017$, $\mathcal{R}(D^*) = 0.332 \pm 0.024 \pm 0.018$. $\mathcal{R}_{SM}(D^*) = 0.252 \pm 0.003$,> 20 for R(D) and 2.70 for R(D*). Combined 3.40 dev. from the SM!BABAR+BELLE '12 Av.SM pred. [Charles et al. '05] $\mathcal{B}_{exp}[B \to \tau\nu] = (1.15 \pm 0.23) \times 10^{-4}$ $\mathcal{B}_{SM}[B \to \tau\nu] = (0.796^{+0.088}_{-0.087}) \times 10^{-4}$ > Disagrees with SM pred, by 1.60 using Vub from global fit!

evidence for LFU violation -> which model of NP to explain?

- 2HDM II is not capable of removing these tensions! (destructive interference with SM for B->TV and cannot simultaneously satisfy R(D) and $R(D^*)$.)

Possibilities:
NP in B mixing (bigger values for V_{ub})

• 2HDM-III with flavor viol. in the up sector

• RH W-couplings etc.

> R(D) and $R(D^*)$ can simultaneously be explained by ε^{u}_{32} .

Also, B->TV can be brought into agreement with exp. using ε^u₃₁. [Crivellin, Greub and AK] (PRD 86, 054014, 2012)

> We propose searches for $A^{\circ}, H^{\circ} - \lambda tc(u)$ or $t - \lambda h^{\circ}c(u)$ at the LHC to test the model.

--> related work is in progress!

Allowed 10 region for $tan\beta=50$, $m_{H}=500$ GeV

> Explaining the (slight) discrepancy in B->TV by ϵ^{d}_{33} violates Naturalness criterion!

LFV transitions

♦ Neutral meson decays: B_{s,d}->µe (B_{s,d}->Tµ, B_{s,d}->Te)

- In the SM (massless neutrinos) Br's of these decays are zero!

- In the 2HDM-II they are also not possible (no FCNH interactions)!
- In the 2HDM-III they are possible if $\varepsilon_{ij}^{l}\neq 0$, and even a tree-level neutral Higgs contribution exist when also $\varepsilon_{32,23}^{d}\neq 0$ ($\varepsilon_{31,13}^{d}\neq 0$).

- for large tanβ and v<<m_H we obtain: [Crivellin, Greub and AK] (PRD 87, 094031, 2013)

$$\mathcal{B}\left[B_q
ightarrow \ell_i^+ \ell_j^-
ight] pprox N_{ij}^q \left(rac{ aneta/50}{m_H/500\, ext{GeV}}
ight)^4 2 \left[\left|\epsilon_{ji}^\ell
ight|^2 \left|\epsilon_{q3}^d
ight|^2 + \left|\epsilon_{ij}^\ell
ight|^2 \left|\epsilon_{3q}^d
ight|^2
ight]$$

with

$$\begin{split} N_{21}^{s} &\approx 2.1 \times 10^{7} \frac{f_{B_{s}}}{0.229 \, \mathrm{GeV}}, \\ N_{21}^{d} &\approx 1.6 \times 10^{7} \frac{f_{B_{d}}}{0.196 \, \mathrm{GeV}}, \\ N_{31,32}^{s} &\approx 1.7 \times 10^{7} \frac{f_{B_{s}}}{0.229 \, \mathrm{GeV}}, \\ N_{31,32}^{d} &\approx 1.2 \times 10^{7} \frac{f_{B_{d}}}{0.196 \, \mathrm{GeV}}. \end{split}$$

$$\begin{aligned} & -\mathrm{biggest allowed values for } |\varepsilon^{L}_{32,23}| \left(|\varepsilon^{L}_{31,13}|\right) \mathrm{from } B_{s(d)} - \lambda \mu^{+} \mu^{-} \\ -\mathrm{biggest allowed values for } |\varepsilon^{L}_{32,23}| \left(|\varepsilon^{L}_{31,13}|\right) \mathrm{from } \tau - \lambda \mu^{+} \mu^{-} \\ -\mathrm{biggest allowed values for } |\varepsilon^{L}_{32,23}| \left(|\varepsilon^{L}_{31,13}|\right) \mathrm{from } \tau - \lambda \mu^{+} \mu^{-} \\ -\mathrm{biggest allowed values for } |\varepsilon^{L}_{32,23}| \left(|\varepsilon^{L}_{31,13}|\right) \mathrm{from } \tau - \lambda \mu^{+} \mu^{-} \\ -\mathrm{biggest allowed values for } |\varepsilon^{L}_{32,23}| \left(|\varepsilon^{L}_{31,13}|\right) \mathrm{from } \tau - \lambda \mu^{+} \mu^{-} \\ -\mathrm{biggest allowed values for } |\varepsilon^{L}_{32,23}| \left(|\varepsilon^{L}_{31,13}|\right) \mathrm{from } \tau - \lambda \mu^{+} \mu^{-} \\ -\mathrm{biggest allowed values for } |\varepsilon^{L}_{32,23}| \left(|\varepsilon^{L}_{31,13}|\right) \mathrm{from } \tau - \lambda \mu^{+} \mu^{-} \\ -\mathrm{biggest allowed values for } |\varepsilon^{L}_{32,23}| \left(|\varepsilon^{L}_{31,13}|\right) \mathrm{from } \tau - \lambda \mu^{+} \mu^{-} \\ -\mathrm{biggest allowed values for } |\varepsilon^{L}_{32,23}| \left(|\varepsilon^{L}_{31,13}|\right) \mathrm{from } \tau - \lambda \mu^{+} \mu^{-} \\ -\mathrm{biggest allowed values for } |\varepsilon^{L}_{32,23}| \left(|\varepsilon^{L}_{31,13}|\right) \mathrm{from } \tau - \lambda \mu^{+} \mu^{-} \\ -\mathrm{biggest allowed values for } |\varepsilon^{L}_{32,23}| \left(|\varepsilon^{L}_{31,13}|\right) \mathrm{from } \tau - \lambda \mu^{+} \mu^{-} \\ -\mathrm{biggest allowed values for } |\varepsilon^{L}_{32,23}| \left(|\varepsilon^{L}_{31,13}|\right) \mathrm{from } \tau - \lambda \mu^{+} \mu^{-} \\ -\mathrm{biggest allowed values for } |\varepsilon^{L}_{32,23}| \left(|\varepsilon^{L}_{31,13}|\right) \mathrm{from } \tau - \lambda \mu^{+} \mu^{-} \\ -\mathrm{biggest allowed values for } |\varepsilon^{L}_{32,23}| \left(|\varepsilon^{L}_{31,13}|\right) \mathrm{from } \tau - \lambda \mu^{+} \mu^{-} \\ -\mathrm{biggest allowed values for } |\varepsilon^{L}_{32,23}| \left(|\varepsilon^{L}_{31,13}|\right) \mathrm{from } \tau - \lambda \mu^{+} \mu^{-} \\ -\mathrm{biggest allowed values for } |\varepsilon^{L}_{32,23}| \left(|\varepsilon^{L}_{31,13}|\right) \mathrm{from } \tau - \lambda \mu^{+} \mu^{-} \\ -\mathrm{biggest allowed values for } |\varepsilon^{L}_{32,23}| \left(|\varepsilon^{L}_{31,13}|\right) \mathrm{from } \tau - \lambda \mu^{+} \mu^{-} \\ -\mathrm{biggest allowed values for } |\varepsilon^{L}_{32,23}| \left(|\varepsilon^{L}_{31,13}|\right) \mathrm{from } \tau - \lambda \mu^{+} \\ -\mathrm{biggest allowed values for } |\varepsilon^{L}_{31,13}$$

respecting these bounds we obtain:

tanβ=30 (yellow), tanβ=40 (red), tanβ=50 (blue)

♦ Correlations among l_i->l_fy and l_i->l_f->l_f-l_j+l_j-

-In the 2HDM-III for large tanß and v<<m_H one has

$$\frac{\mathcal{B}\left[\ell_{i} \to \ell_{f}\gamma\right]}{\mathcal{B}\left[\ell_{i}^{-} \to \ell_{f}^{-}\ell_{j}^{+}\ell_{j}^{-}\right]} = \frac{\alpha_{em}}{24\pi} \frac{\left|m_{\ell_{i}}/v - \epsilon_{ii}^{\ell}\right|^{2}}{\left|m_{\ell_{j}}/v - \epsilon_{jj}^{\ell}\right|^{2}} \frac{\left(\left|\epsilon_{if}^{\ell}\right|^{2} + 4\left|\epsilon_{fi}^{\ell}\right|^{2}\right)}{\left(\left|\epsilon_{if}^{\ell}\right|^{2} + \left|\epsilon_{fi}^{\ell}\right|^{2}\right)}$$

- for very large m_{H} , the expression reduces to (when $\epsilon^{L}_{jj}/\epsilon^{L}_{ii}=m_{Lj}/m_{Li}$)

$$\begin{aligned} \frac{\mathcal{B}\left[\ell_i \to \ell_f \gamma\right]}{\mathcal{B}\left[\ell_i^- \to \ell_f^- \ell_j^+ \ell_j^-\right]} &= \frac{\alpha_{em}}{24\pi} \frac{m_{\ell_i}^2}{m_{\ell_j}^2} \ \text{for} \ \epsilon_{if}^\ell \neq 0\\ \frac{\mathcal{B}\left[\ell_i \to \ell_f \gamma\right]}{\mathcal{B}\left[\ell_i^- \to \ell_f^- \ell_j^+ \ell_j^-\right]} &= \frac{\alpha_{em}}{6\pi} \frac{m_{\ell_i}^2}{m_{\ell_j}^2} \ \text{for} \ \epsilon_{fi}^\ell \neq 0 \end{aligned}$$

- for light m_H values, the expression gets modified as (for the 2->1 case):

Summary of the constraints Table-I

Observable	Results	
Neutral meson decays to muons		
$B_s ightarrow \mu^+ \mu^-$	$\left \epsilon_{32}^{d}\right \leq 3.0 imes 10^{-5}, \left \epsilon_{23}^{d}\right \leq 1.9 imes 10^{-5}, \left \epsilon_{22}^{\ell}\right \leq 2.0 imes 10^{-3}$	
$B_d \rightarrow \mu^+ \mu^-$	$\left \epsilon_{31}^{d}\right \leq 1.1 imes 10^{-5}, \left \epsilon_{13}^{d}\right \leq 9.4 imes 10^{-6}$	
$K_L ightarrow \mu^+ \mu^-$	$\left \epsilon_{21}^{d}\right \leq 1.6 imes 10^{-6}, \left \epsilon_{12}^{d}\right \leq 1.6 imes 10^{-6}$	
$\bar{D}^0 ightarrow \mu^+ \mu^-$	$ \epsilon_{21}^u \le 3.0 imes 10^{-2}, \epsilon_{12}^u \le 3.0 imes 10^{-2}$	
$\Delta F = 2 \; { m processes}$		
$B_s - \overline{B}_s$ mixing	$\left \epsilon_{23}^{d}\epsilon_{32}^{d\star}\right \le 9.2 \times 10^{-10}, \left \epsilon_{23}^{u}\right \le 0.18, \left \epsilon_{32}^{u}\right \le 1.7, \left \epsilon_{33}^{u}\right \le 0.7$	
$B_d - \overline{B}_d$ mixing	$\left \epsilon_{13}^{d}\epsilon_{31}^{d\star}\right \leq 3.9 \times 10^{-11}, \left \epsilon_{23}^{u}\right \leq 0.2, \left \epsilon_{13}^{u}\right \leq 0.04, \left \epsilon_{31}^{u}\right \leq 1.9$	
$K - \overline{K}$ mixing	$\left \epsilon_{12}^{d}\epsilon_{21}^{d\star}\right \le 1.0 \times 10^{-12}, \left \epsilon_{22}^{u}\right \le 0.25, \left \epsilon_{23}^{u}\right \le 0.14$	
$D - \overline{D}$ mixing	$ \epsilon_{12}^{u}\epsilon_{21}^{u\star} \le 2.0 imes 10^{-8}, \epsilon_{32}^{u}\epsilon_{31}^{u\star} \le 0.02$	
Radiative <i>B</i> decays		
$b \rightarrow s \gamma$	$ \epsilon^u_{23} \le 0.024, \ \epsilon^u_{33} \le 0.55$	
$b ightarrow d\gamma$	$ \epsilon^u_{13} \le 7.0 imes 10^{-3}$	
Radiative lepton decays		
$\mu \rightarrow e \gamma$	$\left \epsilon_{12}^{\ell} \right \le 1.7 \times 10^{-4}, \left \epsilon_{21}^{\ell} \right \le 2.2 \times 10^{-4}, 55 \le \frac{\mathcal{B}[\mu \to e\gamma]}{\mathcal{B}[\mu \to e^-e^+e^-]} \le 86$	
$\tau \rightarrow e\gamma$	$0.19 \le \frac{\mathcal{B}[\tau \to e\gamma]}{\mathcal{B}[\tau \to e^-\mu^+\mu^-]} \le 0.35$	
$\tau \to \mu \gamma$	$0.19 \le \frac{\mathcal{B}[\tau \to \mu\gamma]}{\mathcal{B}[\tau \to \to \mu^- \mu^+ \mu^-]} \le 0.35$	
Neural current lepton decays		
$\mu^- \to e^- e^+ e^-$	$ \epsilon_{12,21}^{\ell} \leq 2.3 imes 10^{-3}$	
$\tau^- \to e^- \mu^+ \mu^-$	$\left \epsilon_{13,31}^{\ell} ight \leq 4.2 imes 10^{-3}$	
$\tau^- \to \mu^- \mu^+ \mu^-$	$\left \epsilon_{23,32}^{\ell} ight \leq 3.7 imes 10^{-3}$	

Table	e-II
-------	------

Observable	Results	
Charged current processes		
$B \rightarrow \tau \nu$	$2.7 \times 10^{-3} \le \epsilon_{31}^u \le 2.0 \times 10^{-2}, \left \epsilon_{i3}^\ell\right \le 6.0 \times 10^{-2}$	
$B \to D \tau \nu \ \& \ B \to D^\star \tau \nu$	$0.43 \leq \epsilon^u_{32} \leq 0.74$	
$D_s \to \tau \nu$ & $D_{(s)} \to \mu \nu$	$ ext{Re}\left[\epsilon^u_{22} ight] \leq 0.2$	
$D \rightarrow \tau \nu$		
$K \to \mu(e) \nu/\pi \to \mu(e) \nu$	$\left \operatorname{Re}\left[\epsilon_{22}^{d} ight] ight \leq 1.0 imes 10^{-3}$	
$K(\pi) \to e\nu/K(\pi) \to \mu\nu$	$\left \operatorname{Re}\left[\epsilon_{i1}^{\ell}\right]\right \leq 2.0 \times 10^{-6}, \left \operatorname{Re}\left[\epsilon_{i2}^{\ell}\right]\right \leq 5.0 \times 10^{-4}$	
$\tau \to K(\pi)\nu/K(\pi) \to \mu\nu$	$-4.0 imes 10^{-2} \le { m Re} \left[\epsilon_{i3}^{\ell} ight] \le 2.0 imes 10^{-2}$	
$\tau \to K \nu / \tau \to \pi \nu$	$\left \epsilon_{i3}^\ell\right \le 0.14$	
EDMs and anomalous magnetic moments		
d_e	$\left \text{Im} \left[\epsilon_{12}^{\ell} \epsilon_{21}^{\ell} \right] \right \le 2.5 \times 10^{-8}, \left \text{Im} \left[\epsilon_{13}^{\ell} \epsilon_{31}^{\ell} \right] \right \le 2.5 \times 10^{-9}$	
d_{μ}		
$d_{ au}$		
d_n	$ \mathrm{Im}[\epsilon_{11}^u] \leq 2.2 \times 10^{-2}, \mathrm{Im}[\epsilon_{22}^u] \leq 1.1 \times 10^{-1}, \mathrm{Arg}[\epsilon_{31}^u] = \mathrm{Arg}[V_{ub}] \pm \pi$	
a_{μ}	Deviation from the SM cannot be explained	
LVF B meson decays		
$B_s \to \tau \mu$	$\mathcal{B}\left[B_s \to \tau \mu\right] \leq 2.0 \times 10^{-7}$	
$B_s \rightarrow \mu e$	$\mathcal{B}\left[B_s ightarrow \mu e ight] \leq 9.2 imes 10^{-10}$	
$B_s \rightarrow \tau e$	$\mathcal{B}\left[B_s ightarrow au e ight] \leq 2.8 imes 10^{-7}$	
$B_d \to \tau \mu$	$\mathcal{B}\left[B_d \to \tau \mu\right] \leq 2.1 \times 10^{-8}$	
$B_d \rightarrow \mu e$	$\mathcal{B}[B_d ightarrow \mu e] \le 9.2 imes 10^{-11}$	
$B_d \rightarrow \tau e$	$\mathcal{B}\left[B_d ightarrow au e ight] \le 2.8 imes 10^{-8}$	

-Combining the constraints from Table-I and II we obtain

$$\begin{split} \left| \epsilon_{ij}^{u} \right| &\leq \begin{pmatrix} 3.4 \times 10^{-4} & 3.0 \times 10^{-2} & 7.0 \times 10^{-3} \\ 3.0 \times 10^{-2} & 1.4 \times 10^{-1} & 2.4 \times 10^{-2} \\ 2.0 \times 10^{-2} & 7.4 \times 10^{-1} & 5.5 \times 10^{-1} \end{pmatrix}_{ij} \\ \left| \epsilon_{ij}^{d} \right| &\leq \begin{pmatrix} 1.3 \times 10^{-4} & 1.6 \times 10^{-6} & 9.4 \times 10^{-6} \\ 1.6 \times 10^{-6} & 2.6 \times 10^{-4} & 2.0 \times 10^{-5} \\ 1.1 \times 10^{-5} & 3.0 \times 10^{-5} & 1.4 \times 10^{-2} \end{pmatrix}_{ij} \\ \left| \epsilon_{ij}^{\ell} \right| &\leq \begin{pmatrix} 2.9 \times 10^{-6} & 1.7 \times 10^{-4} & 4.2 \times 10^{-3} \\ 2.2 \times 10^{-4} & 6.1 \times 10^{-4} & 3.7 \times 10^{-3} \\ 4.2 \times 10^{-3} & 3.7 \times 10^{-3} & 1.0 \times 10^{-2} \end{pmatrix}_{ij} \end{split}$$

-for the benchmark point of $tan\beta=50$ and $m_{H}=500$ GeV.

3. Conclusions

♦ Type-II 2HDM is not capable of explaining the 2012 exp. data on the tauonic B decays.

- ♦ In the general 2HDM (of type III) it is possible to explain B->(D^(*))TV simultaneously without fine-tuning.
- \diamond In the 2HDM-III all the epsilon parameters except $\epsilon^{u}_{22,32,33}$ are found to be small.

♦ 2HDM-III provides stringent upper limits for LFV neutral B-meson decays.

♦ Interesting correlations exist in 2HDM-III among the LFV radiative lepton decays and the 3-body LFV lepton decays.

 \diamond Searches for A°, H°->tc(u) at the LHC can test the model.

Back-up slides

Higgs Potential in 2HDMs Explicit form (MSSM Like):

$$\begin{split} V &= m_{H_d}^2 \left[(v_d + \rho_d + i\eta_d) \left(v_d + \rho_d - i\eta_d \right) + H_d^+ H_d^- \right] \\ &+ m_{H_u}^2 \left[(v_u + \rho_u + i\eta_u) \left(v_u + \rho_u - i\eta_u \right) + H_u^+ H_u^- \right] \\ &+ \frac{\lambda_1}{2} \left[\left((v_d + \rho_d - i\eta_d) H_u^+ + \left(v_u + \rho_u + i\eta_u \right) H_d^+ \right) \left((v_d + \rho_d + i\eta_d) H_u^- + \left(v_u + \rho_u - i\eta_u \right) H_d^- \right) \right] \\ &+ \frac{\lambda_2}{8} \left[H_u^+ H_u^- - H_d^+ H_d^- + \left(v_u + \rho_u + i\eta_u \right) \left(v_u + \rho_u - i\eta_u \right) - \left(v_d + \rho_d + i\eta_d \right) \left(v_d + \rho_d - i\eta_d \right) \right]^2 \\ &+ b \left[H_u^+ H_d^- + H_u^- H_d^+ - \left(v_u + \rho_u + i\eta_u \right) \left(v_d + \rho_d + i\eta_d \right) - \left(v_u + \rho_u - i\eta_u \right) \left(v_d + \rho_d - i\eta_d \right) \right] \,. \end{split}$$

$$\begin{split} & \text{Couplings defining the Higgs-fermion interactions (type-III):} \\ & \Gamma_{ufu_i}^{LRH_k^0} = x_u^k \left(\frac{m_{u_i}}{v_u} \delta_{fi} - \epsilon_{fi}^u \cot \beta \right) + x_d^{k\star} \epsilon_{fi}^u, \\ & \Gamma_{dfd_i}^{LRH_k^0} = x_d^k \left(\frac{m_{d_i}}{v_d} \delta_{fi} - \epsilon_{fi}^d \tan \beta \right) + x_u^{k\star} \epsilon_{fi}^d, \\ & \Gamma_{ufd_i}^{LRH_k^\pm} = \sum_{j=1}^3 \sin \beta V_{fj} \left(\frac{m_{d_i}}{v_d} \delta_{ji} - \epsilon_{ji}^d \tan \beta \right), \\ & \Gamma_{ufd_i}^{LRH_k^\pm} = \sum_{j=1}^3 \sin \beta V_{fj} \left(\frac{m_{d_i}}{v_d} \delta_{ji} - \epsilon_{ji}^d \tan \beta \right), \\ & \Gamma_{dfu_i}^{LRH_k^\pm} = \sum_{j=1}^3 \cos \beta V_{jf}^\star \left(\frac{m_{u_i}}{v_u} \delta_{ji} - \epsilon_{ji}^d \tan \beta \right). \end{split}$$

The covariant derivative is defined to be

$$\mathbb{D}_{\mu} = \left(\partial_{\mu} + \frac{ig}{2} \left(\begin{array}{cc} W_{\mu}^{3} & \sqrt{2}W_{\mu}^{-} \\ \sqrt{2}W_{\mu}^{+} & -W_{\mu}^{3} \end{array}\right) + \frac{ig'}{2}B_{\mu}\right)$$

Higgs mass terms in 2HDMs

$$\mathcal{L}_{\mathrm{mass}}^{\mathrm{Higgs}} = \mathcal{L}_{\mathrm{mass}}^{\mathrm{H}_{\mathrm{u}}^{\pm},\mathrm{H}_{\mathrm{d}}^{\pm}} + \mathcal{L}_{\mathrm{mass}}^{\rho_{\mathrm{u}},\rho_{\mathrm{d}}} + \mathcal{L}_{\mathrm{mass}}^{\eta_{\mathrm{u}},\eta_{\mathrm{d}}},$$

$$\mathcal{L}_{\mathrm{mass}}^{\mathrm{H}_{\mathrm{u}}^{\pm},\mathrm{H}_{\mathrm{d}}^{\pm}} = -\left(b + \frac{\lambda_{1}v^{2}}{4}\sin\left(2\beta\right)\right)\left(H_{u}^{-},H_{d}^{-}\right)\left(\cot\beta \quad 1 \\ 1 \quad \tan\beta\right)\left(H_{u}^{+} \\ H_{d}^{+}\right),$$

$$\mathcal{L}_{\mathrm{mass}}^{\rho_{\mathrm{u}},\rho_{\mathrm{d}}} = -\left(\rho_{u},\rho_{d}\right)\underbrace{\left(b\cot\beta + \frac{\lambda_{2}v^{2}}{2}\sin^{2}\beta \quad -b - \frac{\lambda_{2}v^{2}}{4}\sin\left(2\beta\right) \\ -b - \frac{\lambda_{2}v^{2}}{4}\sin\left(2\beta\right) \quad b\tan\beta + \frac{\lambda_{2}v^{2}}{2}\cos^{2}\beta\right)}_{\mathcal{M}^{\rho_{u},\rho_{\mathrm{d}}}}\left(\rho_{u} \\ \rho_{d}\right),$$

$$\mathcal{L}_{\mathrm{mass}}^{\eta_{\mathrm{u}},\eta_{\mathrm{d}}} = -\left(\eta_{u},\eta_{d}\right)\left(b\cot\beta \quad b \\ b \quad b\tan\beta\right)\left(\eta_{u} \\ \eta_{d}\right).$$

Diagonalization via orthogonal matrices \rightarrow field trans. of the form:

$$\begin{pmatrix} H_u^1 \\ H_d^{2\star} \end{pmatrix} = \begin{pmatrix} H_u^+ \\ H_d^+ \end{pmatrix} = \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} H^+ \\ G^+ \end{pmatrix}$$

$$\begin{pmatrix} \rho_u \\ \rho_d \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} h^0 \\ H^0 \end{pmatrix} ,$$

$$\begin{pmatrix} \eta_u \\ \eta_d \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} A^0 \\ G^0 \end{pmatrix} .$$

 \rightarrow The physical (h°,H°,A°,H[±]) and GB (G°,G[±]) mass eigenstates:

$$\begin{split} H^0_u &= \rho_u + i\eta_u = \frac{1}{\sqrt{2}} \left(H^0 \sin \alpha + h^0 \cos \alpha + iA^0 \cos \beta - i \sin \beta G^0 \right) \,, \\ H^0_d &= \rho_d + i\eta_d = \frac{1}{\sqrt{2}} \left(H^0 \cos \alpha - h^0 \sin \alpha + iA^0 \sin \beta + i \cos \beta G^0 \right) \,, \\ H^1_u &= H^+_u = \cos \beta \, H^+ - \sin \beta G^+ \,, \\ H^2_d &= H^-_d = \sin \beta \, H^- + \cos \beta G^- \,, \end{split}$$

Explicit expressions for tauonic B-decays

$$\mathcal{B}_{SM}\left[M \to \ell_{j}\nu\right] = \frac{m_{M}}{8\pi} G_{F}^{2} m_{\ell_{j}}^{2} \tau_{M} f_{M}^{2} \left|V_{u_{f}d_{i}}\right|^{2} \left(1 - \frac{m_{\ell_{j}}^{2}}{m_{M}^{2}}\right)^{2} \left(1 + \delta_{EM}^{M\ell_{j}}\right)$$

$$\mathcal{B}_{NP} = \mathcal{B}_{SM} \left| 1 + rac{m_M^2}{\left(m_{u_f} + m_{d_i}
ight) m_{\ell_j}} rac{C_R^{u_f d_i,\ell_j} - C_L^{u_f d_i,\ell_j}}{C_{SM}^{u_f d_i,\ell_j}}
ight|^2$$

$$C_{SM}^{u_f d_i, \ell_j} = 4G_F V_{u_f d_i} / \sqrt{2} \,.$$

$$\mathcal{R}(D) = \mathcal{R}_{SM}(D) \left(1 + 1.5 \Re \left[\frac{C_R^{cb,\tau} + C_L^{cb,\tau}}{C_{SM}^{cb,\tau}} \right] + 1.0 \left| \frac{C_R^{cb,\tau} + C_L^{cb,\tau}}{C_{SM}^{cb,\tau}} \right|^2 \right)$$
$$\mathcal{R}(D^*) = \mathcal{R}_{SM}(D^*) \left(1 + 0.12 \Re \left[\frac{C_R^{cb,\tau} - C_L^{cb,\tau}}{C_{SM}^{cb,\tau}} \right] + 0.05 \left| \frac{C_R^{cb,\tau} - C_L^{cb,\tau}}{C_{SM}^{cb,\tau}} \right|^2 \right)$$

$$\begin{split} C_R^{u_f d_i\,,\ell_j} &= -\frac{\tan^2\beta}{m_{H^\pm}^2} \left(V_{fi} \frac{m_{d_i}}{v} - \sum_{j=1}^3 V_{fj} \epsilon_{ji}^d \right) \left(\frac{m_{\ell_j}}{v} - \sum_{k=1}^3 \epsilon_{kj}^{\ell\star} \right) \,, \\ C_L^{u_f d_i\,,\ell_j} &= \frac{\tan\beta}{m_{H^\pm}^2} \sum_{j=1}^3 V_{ji} \epsilon_{jf}^{\star u} \left(\frac{m_{\ell_j}}{v} - \sum_{k=1}^3 \epsilon_{kj}^{\ell\star} \right) \,. \end{split}$$

t' Hooft's naturalness criterion

$$\begin{split} m_{ij}^{d} &= v_{d}Y_{ij}^{d\,\mathrm{ew}} + v_{u}\epsilon_{ij}^{d\,\mathrm{ew}} \,, & \left| v_{u(d)}\epsilon_{ij}^{d(u)} \right| \leq \left| V_{ij}^{\mathrm{CKM}} \right| \times \max\left[m_{d_{i}(u_{i})}, m_{d_{j}(u_{j})} \right] \,\,\mathrm{for}\,\, i < j \,, \\ m_{ij}^{u} &= v_{u}Y_{ij}^{u\,\mathrm{ew}} + v_{d}\epsilon_{ij}^{u\,\mathrm{ew}} \,, & \left| v_{u(d)}\epsilon_{ij}^{d(u)} \right| \leq \max\left[m_{d_{i}(u_{i})}, m_{d_{j}(u_{j})} \right] \,\,\mathrm{for}\,\, i \geq j \,, \\ m_{ij}^{\ell} &= v_{d}Y_{ij}^{\ell\,\mathrm{ew}} + v_{u}\epsilon_{ij}^{\ell\,\mathrm{ew}} \,. & \left| v_{u}\epsilon_{ij}^{\ell} \right| \leq \max\left[m_{\ell_{i}}, m_{\ell_{j}} \right] \,. \end{split}$$

for large tanß limit and mq(500GeV)

$$\begin{split} \left| \epsilon_{ij}^{d} \right| &\leq \begin{pmatrix} 1.3 \times 10^{-4} & 5.8 \times 10^{-5} & 5.1 \times 10^{-5} \\ 2.6 \times 10^{-4} & 2.6 \times 10^{-4} & 5.9 \times 10^{-4} \\ 1.4 \times 10^{-2} & 1.4 \times 10^{-2} & 1.4 \times 10^{-2} \end{pmatrix}_{ij}, \\ \left| \epsilon_{ij}^{u} \right| &\leq \left(\tan \beta / 50 \right) \begin{pmatrix} 3.4 \times 10^{-4} & 3.2 \times 10^{-2} & 1.6 \times 10^{-1} \\ 1.4 \times 10^{-1} & 1.4 \times 10^{-1} & 1.9 \\ - & - & - \end{pmatrix}_{ij} \\ \left| \epsilon_{ij}^{\ell} \right| &\leq \begin{pmatrix} 2.9 \times 10^{-6} & 6.1 \times 10^{-4} & 1.0 \times 10^{-2} \\ 6.1 \times 10^{-4} & 6.1 \times 10^{-4} & 1.0 \times 10^{-2} \\ 1.0 \times 10^{-2} & 1.0 \times 10^{-2} & 1.0 \times 10^{-2} \end{pmatrix}_{ij}. \end{split}$$

Wave func. rotations to arrive at phys. basis with diag. quark mass matrices

$$U_{jf}^{q\,L\star}m_{jk}^{q}U_{ki}^{q\,R} = m_{q_i}\delta_{fi}$$

CKM matrix

$$V_{fi} = U_{jf}^{u\,L*} U_{ji}^{d\,L}$$

Upper limits in type-III 2HDM tanß=30 (yellow), tanß=40 (red), tanß=50 (blue)

Updated values and plots

 $Br[B_{s} \rightarrow \mu\mu] = 2.9^{+1.1}_{-1.0} \times 10^{-9}$ 95% CL, LHCb'July13 $Br[B_{d} \rightarrow \mu\mu] < 7.4 \times 10^{-10}$ 95% CL, LHCb'July13

 $Br[B_s - \lambda \mu e] < 1.4 \times 10^{-8}$ 95% CL, LHCb'July13 $Br[B_d - \lambda \mu e] < 3.7 \times 10^{-9}$ 95% CL, LHCb'July13

Ket

Predicted ratio in 2HDM-III

- The behavior of 3->1 transitions is very similar to 3->2 transitions shown here.