University of Liverpool

Automatic generation of RGEs at two-loop: PyR@TE

arXiv:1309.7030

Florian Lyonnet

In collaboration with Ingo Schienbein, Florian Staub, Akın Wingerter

Laboratoire de Physique Subatomique et de Cosmologie Université Joseph Fourier, Grenoble

November 13, 2013

Introduction	RGEs @2-loop in a General Gauge Field Theory	PyR@TE	Stability bound and new physics
••••	000000000	0000	000000

Motivations

Description

 Generate the Renormalization Group Equations for non-supersymmetic theories @ 2-loop

Introduction	RGEs @2-loop in a General Gauge Field Theory	PyR@TE	Stability bound and new physics
•00			

Motivations

Description

- Generate the Renormalization Group Equations for non-supersymmetic theories @ 2-loop
- No evidence of SUSY so far :
 - $(g-2)_{\mu}, B_s \to \mu^+ \mu^-, b \to s\gamma, \dots$
 - collider experiments
 - direct DM detection experiments

Motivations

Description

- Generate the Renormalization Group Equations for non-supersymmetic theories @ 2-loop
- No evidence of SUSY so far :
 - $(g-2)_{\mu}, B_s \to \mu^+ \mu^-, b \to s\gamma, \dots$
 - collider experiments
 - direct DM detection experiments
- Systematic studies of non-SUSY models require the RGEs
- One possible application: constraining non-SUSY BSM models via the stability bound

Introduction	RGEs @2-loop in a General Gauge Field Theory	PyR@TE	Stability bound and new physics
000			

RGEs for general gauge theories known for a long time:

- M. Machacek and M. T. Vaughn, 1983 Nuc.Phys.B222
- M. Luo et al. Phys.Rev. D67 (2003) 065019
- Calculation of beta functions "by hand" is time consuming and prone to error ⇒ Difficult to use in practice.
- Full set of 2-loop RGEs known only for few specific cases:
 - SM + Neutrinos

from A. Wingerter Phys. Rev. D84 (2011) 095012

SM + chiral fourth generation

from C. Cheung et al. JHEP 1207 (2012) 105

- SM + real singlet scalar
- SM + real triplet scalar
- SM + complex doublet scalar

▶ ...

Introduction Rols @2-	loop in a General Gauge Field Theory	FYREIE	Stability bound and new physics
000 000000	0000	0000	000000

SUSY

- SARAH Comp. Phys. Com. 182 (2011) pp. 808-833 (spectrum generator generator)
- SUSYNO Comput.Phys.Commun. 183 (2012) 2298-2306

NON-SUSY

- Two implementations in parallel in Python and Mathematica
- Python \Rightarrow PyR@TE
- Mathematica \Rightarrow merged with SARAH 4.0.
- Numerous cross checks between the two versions

	RGEs @2-loop in a General Gauge Field Theory	PyR@TE	Stability bound and new physics
000	000000000	0000	000000

Outline

Introduction

RGEs @2-loop in a General Gauge Field Theory

PyR@TE

Stability bound and new physics

	RGEs @2-loop in a General Gauge Field Theory	PyR@TE	Stability bound and new physics
000	•00000000	0000	

Renormalization Group Equations

Renormalization scale μ

$$\Rightarrow g_{10}, \alpha_{S0}, \lambda_0 \cdots \Rightarrow \tilde{g}_1(\mu), \tilde{\alpha}_S(\mu), \tilde{\lambda}(\mu).$$

RGEs : ensure the invariance of the observables.

• e.g. :
$$\mu \frac{d}{d\mu} \tilde{\alpha}_S(\mu) = \beta_{\alpha_S}$$

- β functions depend on the theory i.e. particles and gauge groups.
- Can be approximated in perturbation theory.

Renormalization Group Equations

- The RG gives the dependence of the system on the energy probing it.
- Beta functions can be calculated from the renormalization constants.
- The RGEs depend on the renormalization scheme.
- $\overline{\mathrm{MS}}$ scheme and regularization in d dimensions.

Renormalization Group Equations

Fig: from G. Degrassi et al. arXiv:1205.6497

Florian LYONNET

Generation of two-loop RGEs: PyR@TE

Introduction RGE3 G2 100	p in a General Gauge Field Theory	FYNCEIL	Stability bound and new physics
000000000000000000000000000000000000000	00	0000	000000

Definition

Take a general gauge field theory

 $G_1 \times G_2 \times \cdots \times G_n$ direct product of simple groups

 $\mathcal{L} \supset - N_a Y^a_{jk} \psi_j \xi \psi_k \phi_a + h.c. \Rightarrow \beta^a_{jk}$ $- N_\lambda \lambda_{abcd} \phi_a \phi_b \phi_c \phi_d \Rightarrow \beta_{abcd}$ $- N_{mf} (mf)_{jk} \psi_j \xi \psi_k + h.c. \Rightarrow (\beta_{mf})_{jk}$ $- N_{mab} m^2_{ab} \phi_a \phi_b \Rightarrow \beta_{ab}$ $- N_h \phi_a \phi_b \phi_c \Rightarrow \beta_{abc},$

- \Rightarrow 6 types of beta functions to calculate:
- $\beta(g) \Rightarrow$ gauge couplings
- $\beta^a_{jk} \Rightarrow$ yukawas
- $\beta_{abcd} \Rightarrow$ quartic couplings

- $\beta_{ab} \Rightarrow$ scalar mass
- $(\beta_{mf})_{jk} \Rightarrow$ fermion mass
- $\beta_{abc} \Rightarrow$ trilinear couplings

RGEs @2-loop in a General Gauge Field Theory	PyR@TE	Stability bound and new physics
00000000		

Results

Known @two-loop:

- Machacek and M. T. Vaughn, 1983 Nuc.Phys.B222
- Corrected/enhenced M. Luo et al. Phys.Rev. D67 (2003)
- ▶ Multiple U(1) factors, M. Luo et al Phys.Lett. B555 (2003)
 - Also see, R. Fonseca, M. Malinsky, F. Staub, arXiv:1308.1674

e.g. gauge coupling constant for unique gauge group factor :

$$\begin{split} \beta(g) &= -\frac{g^3}{(4\pi)^2} \left\{ \frac{11}{3} C_2(G) - \frac{4}{3} \kappa S_2(F) - \frac{1}{6} S_2(S) + 2\frac{\kappa}{(4\pi)^2} Y_4(F) \right\} \\ &+ \frac{g^5}{(4\pi)^4} \left\{ \frac{34}{3} [C_2(G)]^2 - \kappa [4C_2(F) + \frac{20}{3} C_2(G)] S_2(F) \right. \\ &\left. - [2C_2(S) + \frac{1}{3} C_2(G)] S_2(S) \right\}, \\ Y_4(F) &= \frac{1}{d(G)} Tr\left(C_2(F) Y^a Y^{\dagger a}\right) \end{split}$$

RGEs @2-loop in a General Gauge Field Theory	PyR@TE	Stability bound and new physics
00000000		

Results

- Notation extremely compact, difficult to find the correct multiplicity!
- E.g.(1): two-loop gauge couplings beta function

$$g_k^4(S(R)C(R))_k \to \sum_r \sum_l g_k^2 g_l^2 \mathcal{N}_r \mathcal{S}_k(\Lambda(r)) \mathcal{C}_l(\Lambda(r)) \prod_m \tilde{N}(\Lambda(r))_{mk}$$

- r is running over the scalars (R = S) or fermions (R = F) of the model.
- C_l is the quadratic casimir of the irrep $\Lambda(r)$.
- S_k is the dynkin index of the irrep $\Lambda(r)$.
- $N_l(\Lambda)$ is the dimension of the irrep Λ in

$$\tilde{N}(\Lambda)_{lk} = \begin{cases} N_l(\Lambda) & \text{if } l \neq k, \\ 1 & \text{else if } l = k. \end{cases}$$

000 00000000 0000 00000		RGEs @2-loop in a General Gauge Field Theory	PyR@TE	Stability bound and new physics
	000	00000000	0000	000000

Results

E.g.(1): two-loop gauge couplings beta function

$$g_k^4(S(R)C(R))_k \to \sum_r \sum_l g_k^2 g_l^2 \mathcal{N}_r \mathcal{S}_k(\Lambda(r)) \mathcal{C}_l(\Lambda(r)) \prod_m \tilde{N}(\Lambda(r))_{mk}$$

 $\blacksquare \ N_l(\Lambda)$ is the dimension of the irrep in Λ

$$\tilde{N}(\Lambda)_{lk} = \begin{cases} N_l(\Lambda) & \text{ if } l \neq k, \\ 1 & \text{ else if } l = k \,. \end{cases}$$

• E.g. in the SM the quark doublet $Q \sim (3,2)$ contribution to this term for the g_3 couplings is :

$$\begin{aligned} (S(R)C(R))_{\rm SU(3)}(Q) &: g_3^2 g_3^2 \cdot S(\mathbf{3})_{\rm SU(3)} \cdot C_{\rm SU(3)}(\mathbf{3}) \cdot n_g(1 \cdot 2) \\ &+ \mathsf{g}_3^2 g_2^2 \cdot S(\mathbf{3})_{\rm SU(3)} \cdot C_{\rm SU(2)}(\mathbf{2}) \cdot n_g(2 \cdot 1) \end{aligned}$$

RGEs @2-loop in a General Gauge Field Theory	PyR@TE	Stability bound and new physics
000000000		

E.g. (2): $g_2^2 g_3^3$ contribution to g_3 in the SM

$$diag \sim g_2^2 g_3^2 \sum_{a,b,i,j,B} \lambda^A_{a,b} \sigma^B_{i,j} \sigma^B_{j,i} \lambda^C_{b,a}$$

	RGEs @2-loop in a General Gauge Field Theory	PyR@TE	Stability bound and new physics
000	0000000000		

SUSY vs Non-SUSY RGEs

- Non SUSY case ⇒Quartic Terms
- Expressions more involved \Rightarrow more time consuming
- One needs the explicit matrices of the representation for the scalars and fermions:

$$\bullet \ D_{\mu}\phi_a = \partial_{\mu}\phi_a - ig\theta^A_{ab}V^A_{\mu}\phi_b$$

- θ^A_{ab} assumed purely imaginary and antisymmetric in the calculation. \Rightarrow Hermitian Basis
 - \blacktriangleright complex hermitian field with n components $\Rightarrow 2n$ components real vector transforming as

$$L_{i} = \frac{1}{2} \begin{pmatrix} \tilde{L}_{i} - \tilde{L}_{i}^{*} & i(\tilde{L}_{i} + \tilde{L}_{i}^{*}) \\ -i(\tilde{L}_{i} + \tilde{L}_{i}^{*}) & \tilde{L}_{i} - \tilde{L}_{i}^{*} \end{pmatrix}$$

$$L_{\phi_{h}}^{1} = \frac{i}{2} \begin{pmatrix} 0 & \tau^{1} \\ -\tau^{1} & 0 \end{pmatrix}, \ L_{\phi_{h}}^{2} = \frac{1}{2} \begin{pmatrix} \tau^{2} & 0 \\ 0 & \tau^{2} \end{pmatrix}, \ L_{\phi_{h}}^{3} = \frac{i}{2} \begin{pmatrix} 0 & \tau^{3} \\ -\tau^{3} & 0 \end{pmatrix}$$

$$\phi_{h} = (\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4})^{T}, \phi^{+} = (\phi_{1} + i\phi_{2})/\sqrt{2}, \phi^{0} = (\phi_{3} + i\phi^{4})/\sqrt{2}$$

The Quartic Terms

Introduction	RGEs @2-loop in a General Gauge Field Theory	PyR@TE	Stability bound and new physics
000	00000000●	0000	

Summary

What are the different ingredients needed ?

- C_2, S_2 for all the representations involved
- θ^A, t^A matrix representation for the scalars and fermions
- Contract the different terms in the Lagrangian into singlets :
 - CGCs, database built from Susyno arxiv: 1106.5016
- Replacement rules to go from single gauge group factor to product :
 - $\bullet \ G \to G_1 \times G_2 \times \cdots \times G_n$
 - ▶ e.g. $g^4C_2(R)C_2(R') \to \sum_{k,l} g_k^2 g_l^2 C_2^k(R) C_2^l(R')$

RGEs @2-loop in a General Gauge Field Theory	PyR@TE	Stability bound and new physics

Outline

Introduction

RGEs @2-loop in a General Gauge Field Theory

PyR@TE

Stability bound and new physics

RGEs @2-loop in a General Gauge Field Theory	PyR@TE	Stability bound and new physics
	0000	

Main features

- Public code for any non-SUSY theories, RGEs at 2-loop .
- Version 1.0.2 is out : http://pyrate.hepforge.org
- Gauge Groups : U(1); SU(n), n = 2, ..., 6 (no kinetic mixing).
- shell and interactive mode (IPython notebook)

Validation

- Collaborator F. Staub implemented same RGEs in SARAH 4, arXiv: 1309.7223 ⇒ independent cross check.
- All the models from C. Cheung et al. JHEP 1207 (2012) 105
- Cross checking the beta functions that are not in the SM :
 - SM + one real scalar field \Rightarrow Trilinear term
 - SM + t' vector like quark \Rightarrow Fermion mass term

11110000001011 110023 02-100	p in a General Gauge Field Theory	YRUIE Stability	bound and new physics
000 0000000	o o	00000 00000	,

Future developments :

- Extend the group part i.e. more groups, more irreps
- Generation indices for scalars
- Multiple $U(1) \Rightarrow$ Kinetic mixing
- Running of the vevs, arXiv: 1305.1548
- Include available three loops results

RGEs @2-loop in a General Gauge Field Theory	PyR@TE	Stability bound and new physics
	0000	

Structure of PyR@TE

Introduction	RGEs @2-loop in a General Gauge Field Theory	PyR@TE	Stability bound and new physics
000	000000000	ooo●	

• .model required to run and .settings.

Introduction	RGEs @2-loop in a General Gauge Field Theory	PyR@TE	Stability bound and new physics
000	000000000	oooo	

.model required to run and .settings.

Introduction	RGEs @2-loop in a General Gauge Field Theory	PyR@TE	Stability bound and new physics
000	0000000000	ooo●	

.model required to run and .settings.

Introduction	RGEs @2-loop in a General Gauge Field Theory	PyR@TE	Stability bound and new physics
000	0000000000	ooo●	

.model required to run and .settings.

RGEs @2-loop in a General Gauge Field Theory	PyR@TE	Stability bound and new physics

Outline

Introduction

RGEs @2-loop in a General Gauge Field Theory

PyR@TE

Stability bound and new physics

Stability bound

- Our existence demands that the minimum of the EW potential be stable !
 - Stable : Only one minimum
 - ▶ meta-Stable : Two minima but $\tau_{minimum} >$ age of the universe \Rightarrow avoid tunneling !
 - Potential Stable up to scale $\Lambda \Leftrightarrow \lambda(\Lambda) > 0$
- $\lambda(\mu)$ calculated from β_{λ} , depends on m_H, m_t, \ldots
- Stability bound :
 - $m_H(m_Z), m_t(m_Z), \ldots$
 - ► Calculate the RGEs (PyR@TE !) and solve them $\Rightarrow \Lambda_{max}!\lambda(\Lambda_{max}) = 0; (m_H(m_Z), \Lambda_{max})$

Stability bound SM

 State of the art : NNLO,
 G. Degrassi et al JHEP 1208 (2012) 098

- Two-loop potential improved
- Three-loop gauge couplings beta function
- \blacktriangleright Leading three-loop contribution to λ and top yukawa
- Absolute stability of the Higgs Potential excluded at 98% C.L. for $M_h < 126 {\rm GeV}$
- Inflation tends to disfavor the meta-stability, A. Kobakhidze et al. arXiv:1301.2846v2 [hep-ph]

Vector like t' model

Vector like quarks

Simple extension of the SM

• One vector like $t' \sim (3,1)_{2/3} \Rightarrow$ vector like mass.

• t' modifies the RGEs $\Rightarrow Y_t$ enters β_λ at 1-loop.

Vector like t' model

Vector like quarks

Simple extension of the SM

• One vector like $t' \sim (3,1)_{2/3} \Rightarrow$ vector like mass.

• t' modifies the RGEs $\Rightarrow Y_t$ enters β_λ at 1-loop.

 \Rightarrow Time to have a look at PyR@TE!

	92-100p in a General Gauge Field Theory	FYREIE	Stability bound and new physics
000 00000	000000	0000	000000

Constrains

 Constrains from Wtb and T parameter by G. Cacciapaglia et al. JHEP11(2010)159

•
$$x \sim \frac{y_t v}{\sqrt{2}}, M = 1 \text{TeV} \Rightarrow y_t \sim 1.06$$

Stability Bound

- Estimated the stability bound for this model.
- Impose the higgs mass : $m_H \sim 125 GeV$
- No matching corrections for now.
- Possibility of extracting constrains in the plane (Y_t, Λ).

Conclusion and outlook

- For a more systematic study of non SUSY models RGEs are needed.
- We developed a tool that generates the RGEs @2-loop ⇒ PyR@TE
- Have fun !

