Magnetic moment $(g-2)_{\mu}$ and SUSY

Dominik Stöckinger

SUPA, Edinburgh

BSMUK, Liverpool, March 2007

[DS '07]

Dominik Stöckinger

 $\square \Vdash \triangleleft \square \Vdash \triangleleft \square \Vdash \triangleleft \square \Vdash \triangleleft \square \blacksquare \blacksquare \blacksquare \square \square$ Magnetic moment $(g - 2)_{\mu}$ and SUSY

(g-2): Magnetic Moment of the Muon

3.4 σ deviation from SM-prediction!

< \square > < \square > < \square > < $<math>\equiv$ > < \equiv > = > = = = = = Magnetic moment $(g-2)_{\mu}$ and SUSY

Outline

- Status: SM and experiment
- 2 a_{μ} and SUSY
- 3 Numerical results in SUSY
 - 4 Campaign for new, better measurement

5 Conclusions

・ 同 ト ・ ヨ ト ・ ヨ

Outline

- 3 Numerical results in SUSY
- 4 Campaign for new, better measurement
- 5 Conclusions

Status: SM and experiment

Classification of SM contributions

3

Era of the Brookhaven experiment

78 – 2001: Theory precision increased to $\pm 10 imes 10^{-10}$							
2001: BNL experiment:	$\pmb{a}_{\mu}^{\mathrm{exp}}-\pmb{a}_{\mu}^{\mathrm{th}}=$	43 ± 16	2.7 σ				
2002: correction of lbl sign error:		28 ± 16	1.7 σ				
2002: BNL experiment:		26 ± 11	2.4 σ				

2003: 4-Loop error, new LBL result: $20 \pm 11 \quad 1.8\sigma$

'03–'06: Consolidation of SM result by effort of many groups spring 2006: BNL experiment (final): 24 ± 10 2.4 σ >summer 2006: new SM evaluations: spectacular improvement

Current status

- Exp: finalized
- Th:
 - new SM evaluations, based on new exp data for $a_{\mu}^{\rm had}$:

$$a_{\mu}(\text{Exp-SM}) = \left\{ \begin{array}{ll} [HMNT06] & 28(8) \\ [DEHZ06] & 28(8) \\ [FJ07] & 29(9) \end{array} \right\} \times 10^{-10}$$

 better agreement between evaluations, more precise, larger deviation from exp than ever before

Outline

Status: SM and experiment

2 a_{μ} and SUSY

- 3 Numerical results in SUSY
- 4 Campaign for new, better measurement
- 5 Conclusions

Two questions:

Could SUSY be the origin of the $(28 \pm 8) \times 10^{-10}$ deviation?

Which restrictions on SUSY follow from (e.g. 3σ band)

 $3 \times 10^{-10} < a_{\mu}^{\rm SUSY} < 51 \times 10^{-10}$?

э.

g-2 in the MSSM

Key to understand g - 2:

chiral symmetry

g - 2 = chirality-flipping interaction

$$ar{u}_R(p')rac{\sigma_{\mu
u}q^
u}{2m_\mu}u_L(p)+(L\leftrightarrow R)$$

in each Feynman diagram we need to pick up one transition

$$\mu_L
ightarrow \mu_R$$
 or $\tilde{\mu}_L
ightarrow \tilde{\mu}_R$

Chiral symmetry would forbid g - 2

g-2 in the MSSM

chiral symmetry broken by λ_{μ} , $m_{\mu} = \lambda_{\mu} \langle H_1 \rangle$

• second Higgs doublet *H*₂ important

$$\tan \beta = \frac{\langle H_2 \rangle}{\langle H_1 \rangle}, \qquad \mu = H_2 - H_1 \text{ transition}$$

some terms

some terms

(

 $l \propto \lambda_{\mu} \, \mu \langle H_2
angle = m_{\mu} \, \mu \, \tan \beta \qquad \rightarrow a_{\mu}^{\text{SUSY}} \propto \tan \beta \, \text{sign}(\mu) \, \frac{m_{\mu}^2}{M_{\text{supy}}^2}$

potential enhancement $\propto \tan \beta = 1 \dots 50$

< ロ > < 同 > < 回 > < 回 > .

1-Loop result if μ , $m_{\tilde{\mu}}$, $m_{\tilde{\chi}} \approx M_{\mathrm{SUSY}}$

$$a_{\mu}^{\text{SUSY}} \approx \frac{\alpha}{\pi \ 8s_{W}^{2}} \tan \beta \ \text{sign}(\mu) \ \frac{m_{\mu}^{2}}{M_{\text{SUSY}}^{2}}$$

numerically

$$a_{\mu}^{\text{SUSY}} \approx 12 \times 10^{-10} \tan \beta \, \text{sign}(\mu) \left(\frac{100 \text{GeV}}{M_{\text{SUSY}}}\right)^2$$

• $\propto \tan\beta \operatorname{sign}(\mu)$

 $\odot \propto 1/M_{\rm SUSY}^2,$ but complicated dependence on individual masses

1-Loop result if μ , $m_{\tilde{\mu}}$, $m_{\tilde{\chi}} \approx M_{\mathrm{SUSY}}$

$$a_{\mu}^{\text{SUSY}} \approx \frac{\alpha}{\pi 8 s_{W}^{2}} \tan \beta \operatorname{sign}(\mu) \frac{m_{\mu}^{2}}{M_{\text{SUSY}}^{2}}$$

numerically

$$a_{\mu}^{\text{SUSY}} \approx 12 \times 10^{-10} \tan \beta \, \text{sign}(\mu) \left(\frac{100 \text{GeV}}{M_{\text{SUSY}}}\right)^2$$

e.g. $a_{\mu}^{\rm SUSY} = 24 \times 10^{-10}$ for

$$\begin{array}{ll} \tan\beta=2, & M_{\rm SUSY}=100~{\rm GeV}\\ \tan\beta=50, & M_{\rm SUSY}=500~{\rm GeV} \end{array} (\mu>0) \end{array}$$

 \Rightarrow SUSY could easily be the origin of the observed deviation!

Dominik Stöckinger

Magnetic moment $(g - 2)_{\mu}$ and SUSY

1-Loop result if μ , $m_{\tilde{\mu}}$, $m_{\tilde{\chi}} \approx M_{\mathrm{SUSY}}$

$$a_{\mu}^{\rm SUSY} pprox rac{lpha}{\pi \ 8s_W^2} an eta \ {
m sign}(\mu) \ rac{m_{\mu}^2}{M_{
m SUSY}^2}$$

numerically

$$a_{\mu}^{\text{SUSY}} \approx 12 \times 10^{-10} \tan \beta \, \text{sign}(\mu) \left(\frac{100 \text{GeV}}{M_{\text{SUSY}}}\right)^2$$

e.g. $a_{\mu}^{\rm SUSY} = -96 \times 10^{-10}$ for

 $\tan \beta = 50$, $M_{\rm SUSY} = 250~{
m GeV}$ ($\mu < 0$)

 \Rightarrow such parameter points are ruled out by $a_{\mu}!$

Dominik Stöckinger

3

Answers:

SUSY could be the origin of the observed $(28\pm8)\times10^{-10}$ deviation!

 a_{μ} significantly restricts the SUSY parameters

 \rightarrow generically, positive μ , large tan β /small $M_{\rm SUSY}$ preferred

Precise analysis justified!

Status of SUSY prediction

1-Loop

 $\propto \tan \beta$

[Fayet '80],... [Kosower et al '83],[Yuan et al '84],... [Lopez et al '94],[Moroi '96]

[Degrassi,Giudice '98]

complete

leading log

2-Loop (SM 1L) $\propto \tan \beta \mu m_t$ \tilde{t}'_{μ} μ'_{μ} \tilde{t}'_{μ}

[Chen,Geng'01][Arhib,Baek '02] [Heinemeyer,DS,Weiglein '03] [Heinemeyer,DS,Weiglein '04]

complete

э

Magnetic moment $(g-2)_{\mu}$ and SUSY

<ロ> (四) (四) (三) (三)

Dominik Stöckinger

SUSY prediction

Implementation of 1-Loop and leading 2-Loop straightforward:

$$\begin{split} \textbf{1-Loop:} \quad & a_{\mu}^{\lambda^{0}} = \frac{m_{\mu}}{16\pi^{2}} \sum_{i,m} \Big\{ -\frac{m_{\mu}}{12m_{\mu,m}^{2}} (|n_{\ell m}^{L}|^{2} + |n_{m}^{R}|^{2}) F_{i}^{R}(x_{m}) + \frac{m_{\nu}}{3m_{\mu}^{2}} \operatorname{Re}[n_{\ell m}^{L} n_{m}^{R}] F_{2}^{N}(x_{m}) \Big\} , \\ & a_{\mu}^{\lambda^{\pm}} = \frac{m_{\mu}}{16\pi^{2}} \sum_{k} \Big\{ \frac{m_{\mu}}{12m_{\nu}^{2}} (|c_{k}^{L}|^{2} + |c_{k}^{R}|^{2}) F_{i}^{C}(x_{k}) + \frac{2m_{\lambda^{\pm}}}{3m_{\mu}^{2}} \operatorname{Re}[c_{k}^{L} c_{k}^{R}] F_{2}^{O}(x_{m}) \Big\} , \\ & n_{m}^{I} = \frac{1}{\sqrt{2}} (g_{1} N_{f1} + g_{2} N_{I2}) U_{m}^{II}^{*} - \gamma_{\mu} N_{I3} U_{m2}^{II}^{*} , \\ & n_{fm}^{R} = \sqrt{2} g_{1} N_{f1} U_{m2}^{II} + \gamma_{\mu} N_{I3} U_{m1}^{II} , \\ & c_{k}^{L} = -g_{2} V_{k1} , \\ & c_{k}^{R} = y_{\mu} U_{k2} \cdot F_{i}^{I}(x) = \frac{2}{(1-x)^{2}} [1 - 6x + 3x^{2} + 2x^{3} - 6x^{2} \log x] , \\ & F_{2}^{C}(x) = \frac{3}{(1-x)^{2}} [1 - x^{2} + 2x \log x] , \\ & F_{i}^{C}(x) = \frac{3}{(1-x)^{2}} [2 + 3x - 6x^{2} + x^{3} + 6x \log x] , \\ & F_{2}^{C}(x) = \frac{3}{(1-x)^{2}} [-3 + 4x - x^{2} - 2 \log x] , \end{split}$$

æ

SUSY prediction

Implementation of 1-Loop and leading 2-Loop straightforward:

$$\begin{array}{ll} \textbf{2-Loop:} \quad \pmb{a}_{\mu}^{logs} = -\frac{4\alpha}{\pi} \log \frac{M_{\rm SUSY}}{m_{\mu}} \, \pmb{a}_{\mu}^{l-Loop} \\ & a_{\mu}^{(\chi+H)} = \frac{\alpha^{2}m_{\mu}^{2}}{8\pi^{2}M_{\mu}^{2}g_{\nu}^{2}} \sum_{k=1,2} \left[{\rm Re}[\lambda_{\mu}^{A^{0}}\lambda_{\chi_{k}^{0}}^{A}] f_{PS}(m_{\chi_{k}^{2}}^{2}/M_{A^{0}}^{2}) + \sum_{S=H^{0},H^{0}} {\rm Re}[\lambda_{\mu}^{S}\lambda_{\chi_{k}^{S}}^{S}] f_{S}(m_{\chi_{k}^{2}}^{2}/M_{S}^{0}) \right] \\ & a_{\mu}^{(T+H)} = \frac{\alpha^{2}m_{\mu}^{2}}{8\pi^{2}M_{\mu}^{6}g_{\nu}^{5}} \sum_{\bar{l}=\bar{1},\bar{b},\bar{\tau}} \sum_{\bar{l}=1,2} \left[\sum_{S=H^{0},H^{0}} (N_{c}O^{2})_{\bar{l}} {\rm Re}[\lambda_{\mu}^{S}\lambda_{\bar{l}}^{S}] f_{l}(m_{\bar{l}}^{2}/M_{S}^{2}) \right] . \\ & \lambda_{\mu}^{(H^{0},H^{0},A^{0})} = \left\{ -\frac{\kappa_{\sigma}}{8g_{\nu}} \frac{c_{\sigma}}{c_{\sigma}}, t_{\beta} \right\}, \\ & \lambda_{\eta}^{(H^{0},H^{0},A^{0})} = \frac{\sqrt{2}M_{\mu}}{N_{\chi_{k}^{2}}} (U_{H}V_{k2}\{c_{\alpha},s_{\alpha},-c_{\beta}\} + U_{k2}V_{k1}\{-s_{\alpha},c_{\alpha},-s_{\beta}\}) . \\ & \lambda_{\eta}^{(H^{0},H^{0})} = \frac{2m_{\chi}}{N_{\chi_{k}^{2}}} (\mu^{*}\{s_{\alpha},-c_{\alpha}\} + A_{l}\{c_{\alpha},s_{\alpha}\}) (U_{\bar{l}}^{2})^{*} U_{\bar{l}^{2}}, \\ & \lambda_{\bar{l}}^{(H^{0},H^{0})} = \frac{2m_{\chi}}{m_{\bar{h}}^{2}g_{\beta}} (-\mu^{*}\{c_{\alpha},s_{\alpha}\} + A_{b}\{-s_{\alpha},c_{\alpha}\}) (U_{\bar{h}}^{2})^{*} U_{\bar{l}^{2}}, \\ & \lambda_{\bar{l}}^{(H^{0},H^{0})} = \frac{2m_{\chi}}{m_{\bar{h}}^{2}g_{\beta}} (-\mu^{*}\{c_{\alpha},s_{\alpha}\} + A_{\tau}\{-s_{\alpha},c_{\alpha}\}) (U_{\bar{l}}^{1})^{*} U_{\bar{l}^{2}}, \\ & \lambda_{\bar{l}}^{(H^{0},H^{0})} = \frac{2m_{\chi}}{m_{\bar{h}}^{6}g_{\beta}} (-\mu^{*}\{c_{\alpha},s_{\alpha}\} + A_{\tau}\{-s_{\alpha},c_{\alpha}\}) (U_{\bar{l}}^{1})^{*} U_{\bar{l}^{2}}, \\ & \lambda_{\bar{l}}^{(H^{0},H^{0})} = \frac{2m_{\chi}}{m_{\bar{h}}^{6}g_{\beta}} (-\mu^{*}\{c_{\alpha},s_{\alpha}\} + A_{\tau}\{-s_{\alpha},c_{\alpha}\}) (U_{\bar{l}}^{1})^{*} U_{\bar{l}^{2}}, \\ & f_{PS}(z) = \frac{2z}{2} \left[Li_{2} \left(1 - \frac{1-y}{2z} \right) - Li_{2} \left(1 - \frac{1+y}{2z} \right) \right] \\ & f_{S}(z) = (2z-1)f_{PS}(z) - 2z(2+\log z), \\ & f_{T}(z) = \frac{z}{2} \left[2 + \log z - f_{PS}(z) \right]. \end{array}$$

3

SUSY prediction

- 1-loop and most 2-loop contributions known
- remaining theory uncertainty of SUSY prediction: [DS 106]

$$\delta a_{\mu}^{
m SUSY} pprox 3 imes 10^{-10}$$

while

$$\delta a_{\mu}^{\exp-\mathrm{SM}} pprox 8 imes 10^{-10}$$

Outline

- Status: SM and experiment
- 2 a_{μ} and SUSY
- 3 Numerical results in SUSY
 - 4 Campaign for new, better measurement
 - 5 Conclusions

Generic behaviour understood. Now study details \rightarrow interesting aspects:

- "typical" / "most general" results
- "aggressive" / "conservative" bounds on SUSY parameters

▲□ → ▲ 三 → ▲ 三 →

benchmark point SPS1a

Agreement with experiment?

benchmark point SPS1a

$$egin{array}{lll} a_\mu({ t SUSY},{ t SPS1a})&=29.8(3.1) imes10^{-10}&{}_{ ext{[DS'06]}}\ a_\mu({ t Exp.-SM})&=28.7(9.1) imes10^{-10}&{}_{ ext{[Jegerlehner'07]}} \end{array}$$

 $M_W({\sf SPS1a}) = M_W({\sf Exp.}) =$

Agreement with experiment?

benchmark point SPS1a

$$a_{\mu}(\text{SUSY, SPS1a}) = 29.8(3.1) \times 10^{-10}$$
 [DS '06]
a (Exp. - SM) = 28.7(9.1) × 10^{-10} [Jacobianov]

$$a_{\mu}(\text{Exp.} - \text{SM}) = 28.7(9.1) \times 10^{-10}$$
 [Jegerlehner'07]

$$M_W({\sf SPS1a}) = 80.381(18) \, {\sf GeV}$$
 [Heinemeyer, Hollik, DS, Weber, Weiglein '06] $M_W({\sf Exp.}) =$

Agreement with experiment?

benchmark point SPS1a

$$a_{\mu}(\text{SUSY, SPS1a}) = 29.8(3.1) \times 10^{-10}$$
 [DS '06]

$$\mathsf{a}_\mu(\mathsf{Exp.}-\mathsf{SM}) = 28.7(9.1) imes 10^{-10}$$
 [Jegerlehner '07]

 $M_W(SPS1a) = 80.381(18) \text{ GeV}$ $M_W(Exp.) = 80.398(25) \text{ GeV}$

[Heinemeyer, Hollik, DS, Weber, Weiglein '06]

[CDF, LEPEWWG '07]

Agreement with experiment? very good!

< ロ > < 同 > < 三 > < 三 > -

3

SPS Point	$a_{\mu}^{ m SUSY,1L}$ (improved)	$a^{(\chi\gamma H)}_{\mu}$	$\pmb{a}_{\!\mu}^{(ilde{f}\gamma H)}$	$\pmb{a}_{\!\mu}^{\mathrm{SUSY},\chi+\mathrm{f},\mathrm{rest}}$	$a_{\mu}^{ m SUSY, ferm+bos, 2L}$
SPS 1a	29.29	0.168	0.029	0.056	0.267
SPS 1b	31.84	0.273	0.044	0.106	0.222
SPS 2	01.65	0.032	-0.002	0.027	0.068
SPS 3	13.55	0.078	0.009	0.029	0.187
SPS 4	49.04	0.786	0.085	0.288	0.349
SPS 5	08.59	0.029	0.135	-0.046	0.153
SPS 6	16.87	0.125	0.015	0.044	0.230
SPS 7	23.71	0.236	0	0.089	0.282
SPS 8	17.33	0.163	-0.001	0.062	0.211
SPS 9	-08.98	-0.046	-0.002	-0.018	0.115

2

イロン イロン イヨン イヨン

"aggressive": require a_{μ}^{SUSY} within 2σ band [Byrne,Kolda,Lennon '02] \Rightarrow upper mass bounds on four lightest sparticles

Dominik Stöckinger

Magnetic moment $(g - 2)_{\mu}$ and SUSY

"conservative": require a_{μ}^{SUSY} within 5σ band [Martin Wells '02] \Rightarrow lower mass limits

Dominik Stöckinger

[Ellis, Olive, Sandick '06]

- MSugra scenario (→ only two parameters)
- even in very restricted scenarios, SUSY can accomodate the observed value of a_μ consistently with many other constraints from dark matter, *b*-decays, direct SUSY+Higgs searches

< ∃ >

< ∃ >

Summary: scan for tan
$$\beta$$
 = 50, all parameters < 3 TeV [DS '06]

SUSY contributions in the observed range for low M_{SUSY} !

3

Outline

- Status: SM and experiment
- 2 a_{μ} and SUSY
- 3 Numerical results in SUSY
- 4 Campaign for new, better measurement

5 Conclusions

Potential of improved measurement

- new Brookhaven experiment proposed and feasible
- improved SM evaluation possible
- projected accuracy: $a_{\mu}(\text{Exp-SM}) = 29.5(3.9) \times 10^{-10}$ [Roberts et al 07]

Would be of tremendous importance as a complement of LHC
Constrain SUSYMeasure tan β (case SPS1a)

Outline

- Status: SM and experiment
- 2) a_{μ} and SUSY
- 3 Numerical results in SUSY
- 4 Campaign for new, better measurement

5 Conclusions

- history: fantastic experiments & calculations, many errors...
- experiment finalized, SM prediction has recently improved (and will further improve!)

$$a_{\mu}^{ ext{exp}}-a_{\mu}^{ ext{SM,HMNT,DEHZ}}=(28\pm8) imes10^{-10}$$
 3.4 σ

- significance of deviation gets stronger!
- further improvement of hadronic contributions can be expected!

$$a_{\mu}^{\mathrm{exp}}-a_{\mu}^{\mathrm{SM},\mathrm{HMNT},\mathrm{DEHZ}}=(28\pm8) imes10^{-10}$$
 3.4 σ

- Case for new physics gets stronger!
- current measurements sensitive to 2-Loop SM and SUSY effects
- 2-Loop SUSY contributions: [Degrassi, Giudice '98] [Heinemeyer, DS, Weiglein '03,'04]
 reliable theory prediction [DS '06]
- SUSY with low mass scale ~ 200...600 GeV fits very well and large parameter regions already excluded

Future, more precise measurements very important and promising!