The PVLAS Puzzle: A Glimpse of Physics Beyond the Standard Model?

Andreas Ringwald

UK BSM 2007 Workshop March 29-30, 2007 Liverpool, UK

Outline:

1. Vacuum Magnetic Dichroism and Birefringence

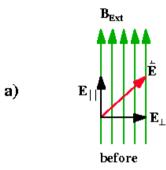
Polarized light propagation through a magnetic field: global data

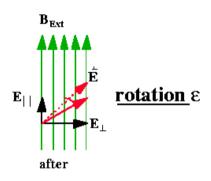
2. Possible Explanations

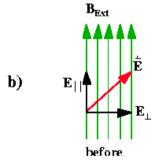
Production of new weakly interacting light particles (WILPs)?

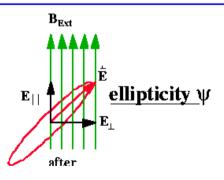
3. Crucial Laboratory Tests

Light or dark-current through-a-wall experiments, ...


4. Problems of Particle Interpretations


Astrophysical, cosmological, and other constraints


5. Conclusions


1. Vacuum Magnetic Dichroism and Birefringence

- Send linearly polarized laser beam through transverse magnetic field ⇒ measure changes in polarization state:
 - rotation (dichroism)
 - ellipticity (birefringence)

[Brandi et al. '01]

1. Vacuum Magnetic Dichroism and Birefringence

- Send linearly polarized laser beam through transverse magnetic field ⇒ measure changes in polarization state:
 - rotation (dichroism)
 - ellipticity (birefringence)

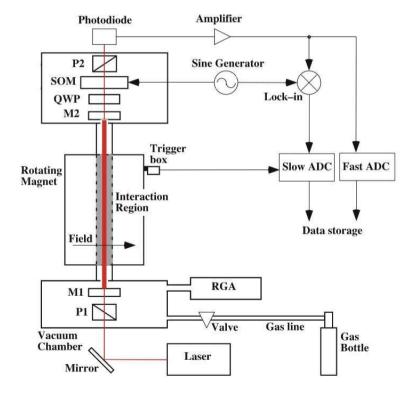
BFRT experiment: [Cameron *et al.* '93] (Brookhaven, Fermilab, Rochester, Trieste)

 $B \sim 2 \text{ T}, \ell = 8.8 \text{ m}, \omega = 2.4 \text{ eV}, N_{\text{pass}} = 34 - 254$

PVLAS experiment: [Zavattini et al. '06]

$$B = 5 \text{ T}, \ell = 1 \text{ m}, \omega = 1.2 \text{ eV}, N_{\text{pass}} = 44000$$

Q&A experiment: [Chen, Mei, Ni '06]


$$B = 2.3 \text{ T}, \ell = 1 \text{ m}, \omega = 1.2 \text{ eV}, N_{\text{pass}} = 18700$$

1. Vacuum Magnetic Dichroism and Birefringence

- Send linearly polarized laser beam through transverse magnetic field ⇒ measure changes in polarization state:
 - rotation (dichroism)
 - ellipticity (birefringence)

PVLAS experiment: [Zavattini,... PRL '06]

 $B = 5 \text{ T}, \ell = 1 \text{ m}, \omega = 1.2 \text{ eV}, N_{\text{pass}} = 44000$

1. Vacuum Magnetic Dichroism and Birefringence

- Send linearly polarized laser beam through transverse magnetic field ⇒ measure changes in polarization state:
 - rotation (dichroism)
 - ellipticity (birefringence)
- No signal in BFRT

BFRT experiment				
Rotation	$(L=8.8$ m, $\lambda=514.5$ nm, $ heta=rac{\pi}{4})$			
$N_{ m pass}$	$ \Delta \theta $ [nrad]	$\Delta heta_{ m noise} \left[{ m nrad} ight]$		
254	0.35	0.30		
34	0.26	0.11		
Ellipticity	$(L=8.8$ m, $\lambda=514.5$ nm, $ heta=rac{\pi}{4})$			
$N_{ m pass}$	$ \psi \; [ext{nrad}]$	$\psi_{ m noise}\left[m nrad ight]$		
578	40.0	11.0		
34	1.60	0.44		
Regen. $(L=4.4 \text{ m}, \langle \lambda \rangle = 500 \text{ nm}, N_{\text{pass}} = 200)$				
$\theta [\mathrm{rad}]$	$rate\;[\mathrm{Hz}]$			
0	-0.012 ± 0.009			
$\frac{\pi}{2}$	0.013 ± 0.007			

[Cameron et al '93]

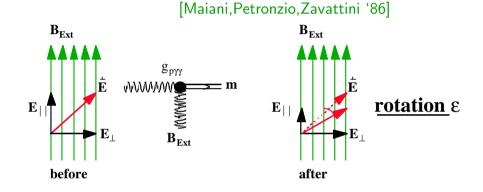
1. Vacuum Magnetic Dichroism and Birefringence

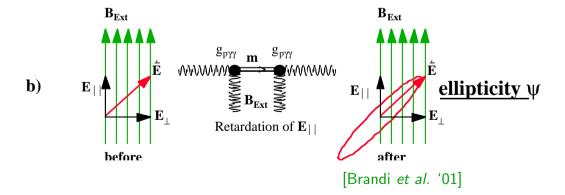
- Send linearly polarized laser beam through transverse magnetic field ⇒ measure changes in polarization state:
 - rotation (dichroism)
 - ellipticity (birefringence)
- No signal in BFRT; signal in PVLAS

PVLAS experiment				
Rotation ($L=1$ m, $N_{\rm pass}=44000$, $\theta=\frac{\pi}{4}$)				
$\lambda \mathrm{[nm]}$	$\Delta \theta [10^{-12} \mathrm{rad/pass}]$			
1064	$(\pm?)3.9 \pm 0.2$			
532	$+6.3\pm1.0$ (preliminary)			
Ellipticity($L=1$ m, $N_{\rm pass}=44000$, $\theta=\frac{\pi}{4}$)				
$\lambda [\mathrm{nm}]$	$\psi [10^{-12} \mathrm{rad/pass}]$			
1064	-3.4 ± 0.3 (preliminary)			
532	-6.0 ± 0.6 (preliminary)			
	[PRL '06; IDM '06; NT '07]			

– The PVLAS Puzzle –

1. Vacuum Magnetic Dichroism and Birefringence

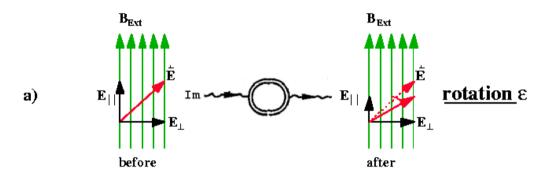

- Send linearly polarized laser beam through transverse magnetic field ⇒ measure changes in polarization state:
 - rotation (dichroism)
 - ellipticity (birefringence)
- No signal in BFRT; signal in PVLAS; no signal in Q&A

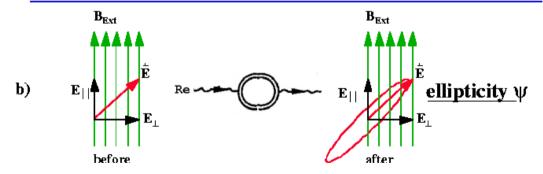

$$egin{aligned} extstyle Q\&A ext{ experiment} \ extstyle Rotation(L=1 ext{ m, } \lambda=1064 ext{ nm, } heta=rac{\pi}{4}) \ N_{ ext{pass}} & \Delta heta ext{ [nrad]} \ 18700 & -0.4 \pm 5.3 \end{aligned}$$

2. Possible Explanations

- Viable explanation in terms of real and virtual production of
 - light neutral spin-zero boson (Axion-Like Particle (ALP)),

Effects of Nearly Massless, Spin Zero Particles on Light Propagation in a Magnetic Field


9


2. Possible Explanations

- Viable explanation in terms of real and virtual production of
 - light neutral spin-zero boson (Axion-Like Particle (ALP))and/or
 - light MiniCharged Particle (MCP)anti-particle pair,

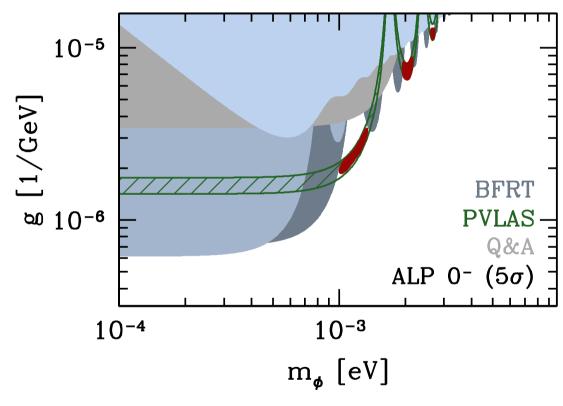
$$\partial_{\mu} \to \partial_{\mu} - \mathrm{i} \epsilon e A_{\mu}$$

Polarized Light Propagating in a Magnetic Field as a Probe for Millicharged Fermions [Gies, Jaeckel, AR '06]

In analogy to theoretically well-studied e^+e^- real and virtual production

[...;Toll '52;...;Adler '71;...;Tsai,Erber '74,'75;...]

Liverpool, March 2007


2. Possible Explanations

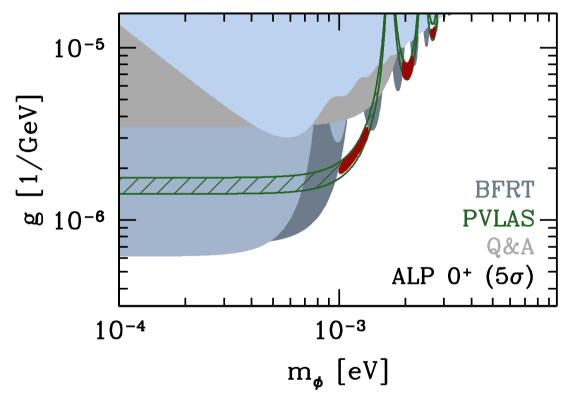
- Viable explanation in terms of real and virtual production of
 - light neutral spin-zero boson (Axion-Like Particle (ALP)),

$$(g/4) \phi^{(-)} F_{\mu\nu} \tilde{F}^{\mu\nu} \left(\phi^{(+)} F_{\mu\nu} F^{\mu\nu} \right)$$

- Published data:
 pure ALP or pure MCP ok
- Preliminary data:
 pure ALP and pure MCP 0 ruled out;
 pure MCP 1/2 ok;
 MCP 1/2 plus ALP 0⁺ preferred

If interpreted in terms of ALP:

[Ahlers, Gies, Jaeckel, AR '06]


2. Possible Explanations

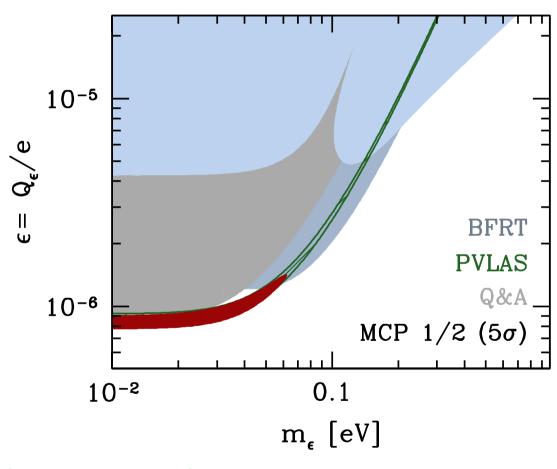
- Viable explanation in terms of real and virtual production of
 - light neutral spin-zero boson (Axion-Like Particle (ALP)),

$$(g/4) \phi^{(-)} F_{\mu\nu} \tilde{F}^{\mu\nu} \left(\phi^{(+)} F_{\mu\nu} F^{\mu\nu} \right)$$

- Published data:
 pure ALP or pure MCP ok
- Preliminary data:
 pure ALP and pure MCP 0 ruled out;
 pure MCP 1/2 ok;
 MCP 1/2 plus ALP 0⁺ preferred

If interpreted in terms of ALP:

[Ahlers, Gies, Jaeckel, AR '06]


2. Possible Explanations

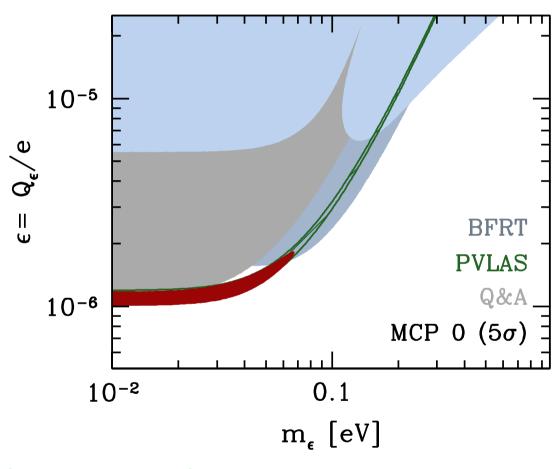
- Viable explanation in terms of real and virtual production of
 - light neutral spin-zero boson (Axion-Like Particle (ALP))and/or
 - light MiniCharged Particle (MCP)anti-particle pair,

$$\partial_{\mu} \to \partial_{\mu} - \mathrm{i} \epsilon e A_{\mu}$$

- Published data:
 pure ALP or pure MCP ok
- Preliminary data:
 pure ALP and pure MCP 0 ruled out;
 pure MCP 1/2 ok;
 MCP 1/2 plus ALP 0⁺ preferred

If interpreted in terms of MCP:

[Ahlers, Gies, Jaeckel, AR '06]


2. Possible Explanations

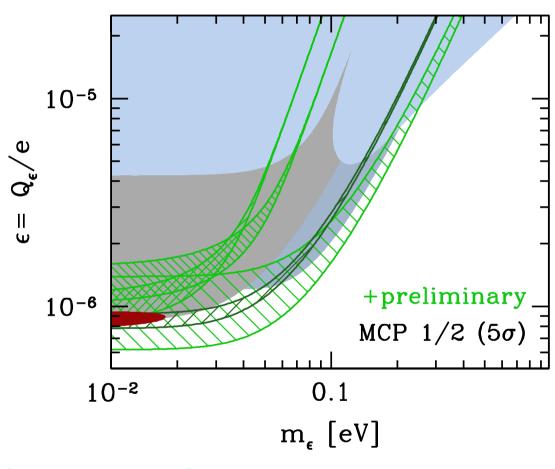
- Viable explanation in terms of real and virtual production of
 - light neutral spin-zero boson (Axion-Like Particle (ALP))and/or
 - light MiniCharged Particle (MCP)anti-particle pair,

$$\partial_{\mu} \to \partial_{\mu} - \mathrm{i} \epsilon e A_{\mu}$$

- Published data:
 pure ALP or pure MCP ok
- Preliminary data:
 pure ALP and pure MCP 0 ruled out;
 pure MCP 1/2 ok;
 MCP 1/2 plus ALP 0⁺ preferred

If interpreted in terms of MCP:

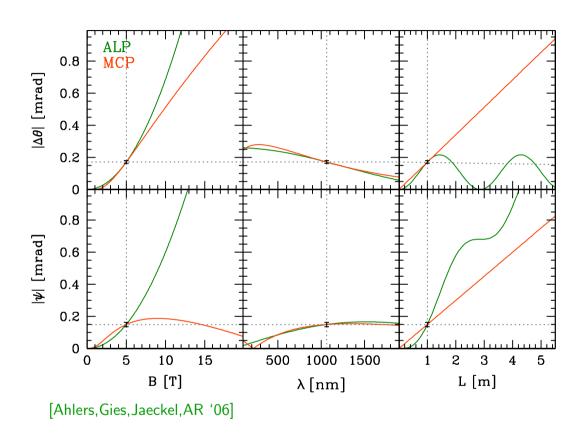
[Ahlers, Gies, Jaeckel, AR '06]


2. Possible Explanations

- Viable explanation in terms of real and virtual production of
 - light neutral spin-zero boson (Axion-Like Particle (ALP))and/or
 - light MiniCharged Particle (MCP)anti-particle pair,

$$\partial_{\mu} \to \partial_{\mu} - \mathrm{i} \epsilon e A_{\mu}$$

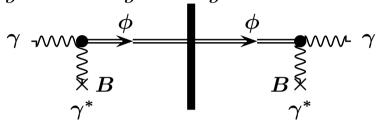
- Published data:
 pure ALP or pure MCP ok
- Preliminary data:
 pure ALP and pure MCP 0 ruled out;
 pure MCP 1/2 ok;
 MCP 1/2 plus ALP 0⁺ preferred


If interpreted in terms of MCP:

[Ahlers, Gies, Jaeckel, AR '06]

3. Crucial Laboratory Tests

• Laser polarization experiments at higher magnetic fields



BMV (Toulouse): 11 T pulsed magnet

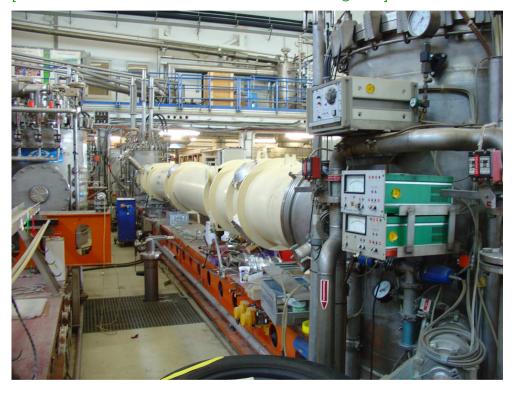
3. Crucial Laboratory Tests

- Laser polarization experiments at higher magnetic fields
- Light shining through a wall

"Light shining through a wall"

[Sikivie '83; Ansel'm '85; Van Bibber et al. '87]

Name	Laboratory	Magnets	$P_{\gamma\phi\gamma} _{g_{ ext{PVLAS}}}$
ALPS	DESY/D	$B_1 = B_2 = 5 \text{ T}$	
		$\ell_1=\ell_2=4.21\;\mathrm{m}$	$\sim 10^{-19}$
BMV	LULI/F	$B_1 = B_2 = 11 \text{ T}$	24
		$\ell_1=\ell_2=0.25\;\mathrm{m}$	$\sim 10^{-21}$
LIPSS	Jlab/USA	$B_1 = B_2 = 1.7 \text{ T}$	22.5
		$\ell_1=\ell_2=1\;m$	$\sim 10^{-23.5}$
OSQAR	CERN/CH	$B_1 = B_2 = 11 \text{ T}$	
		$\ell_1=\ell_2=7~\text{m}$	$\sim 10^{-17}$
		$B_1 = 5 \text{ T}$	20
PVLAS	Legnaro/I	$\ell_1=1\;\mathrm{m}$	$\sim 10^{-23}$
		$B_2=2.2~\mathrm{T}$	
		$\ell_2=0.5~\mathrm{m}$	


[AR '06]

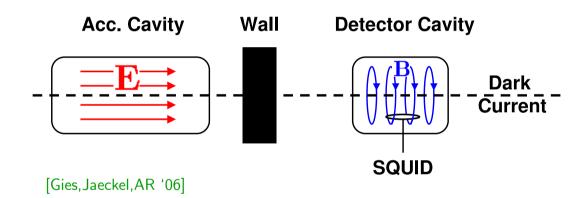
3. Crucial Laboratory Tests

- Laser polarization experiments at higher magnetic fields
- Light shining through a wall

Axion-Like Particle Search:

[DESY, Laser Zentrum Hannover, Sternwarte Bergedorf]

$$B = 5 \text{ T}, \ell = 4.2 \text{ m}, \underbrace{\langle P \rangle = 0.2 \text{ kW}, \omega = 1.2 \text{ eV}}_{\dot{N}_0 \sim 1 \times 10^{21}/\text{s}}, N_r = 0$$


Test of ALP interpretation of PVLAS in summer 2007 Liverpool, March 2007

A. Ringwald (DESY)

17

3. Crucial Laboratory Tests

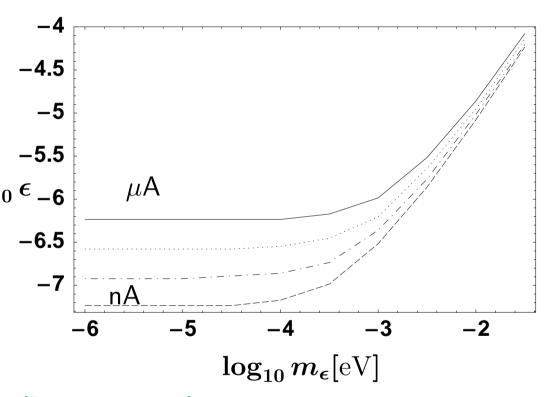
- Laser polarization experiments at higher magnetic fields
- Light shining through a wall
- Dark current through a wall

3. Crucial Laboratory Tests

- Laser polarization experiments at higher magnetic fields
- Light shining through a wall
- Dark current through a wall

Cryogenic Current Comparator:

[DESY, GSI, Universität Jena]



[M. Wendt TESLA2004]

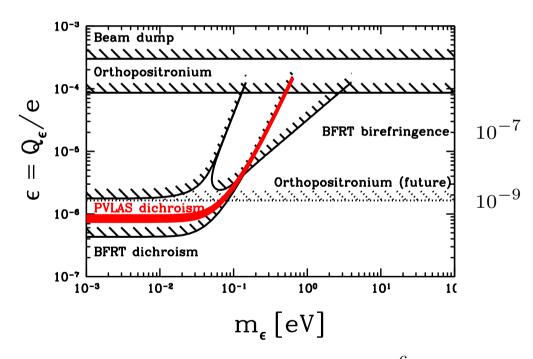
3. Crucial Laboratory Tests

- Laser polarization experiments at higher magnetic fields
- Light shining through a wall
- ullet Dark current through a wall $\log_{10} \epsilon_{-6}$

TESLA accelerator cavity | **CCC**:

[Gies, Jaeckel, AR unpubl.]

21

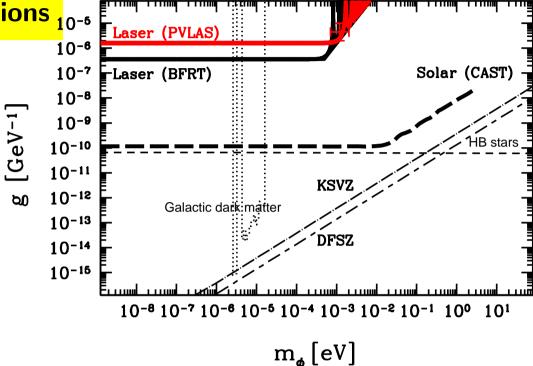

3. Crucial Laboratory Tests

- Laser polarization experiments at higher magnetic fields
- Light shining through a wall
- Dark current through a wall
- Invisible Orthopositronium decay
- Searches for excess e^- from elastic $\epsilon^{\pm}e^-$ scattering in detector near nuclear reactor

[Gninenko, Krasnikov, A. Rubbia '06]

"Search for Invisible Orthopositronium Decay" [Dobroliubov, Ignatiev '89]

BR(OP
$$\rightarrow \epsilon^{+} \epsilon^{-}) \simeq \frac{3\pi \epsilon^{2}}{4\alpha(\pi^{2} - 9)} \simeq 371 \epsilon^{2}$$


[Mitsui et al. '93]: BR(OP
$$\rightarrow$$
 inv.) $< 2.8 \times 10^{-6}$
[Badertscher et al. '06]: BR(OP \rightarrow inv.) $< 4.2 \times 10^{-7}$

A. Ringwald (DESY)

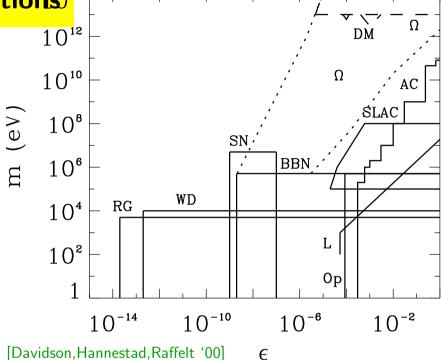
Liverpool, March 2007

4. Problems of Particle Interpretations 10-6

- Energy loss of stars:
 - ALPs: Primakoff $\gamma Z \rightarrow \phi Z$

Way out: $g_{
m |star} \ll g_{
m |vacuum}$

[Masso, Redondo '05; Jaeckel et al. '06; Brax et al. '07]


- ⇒ Even more sub-eV particles and fields,
- e.g. [Masso,Redondo '06;Mohapatra,Nasri '06]
- light U(1) bosons mixing with photon
- scalar field with low scale phase transition
 Liverpool, March 2007

4. Problems of Particle Interpretations 14

• Energy loss of stars:

- ALPs: Primakoff $\gamma Z o \phi Z$

– MCPs: plasmon decay $\gamma^* \to \epsilon^+ \epsilon^-$

Way out: $\epsilon_{|{
m plasma}} \ll \epsilon_{|{
m vacuum}}$

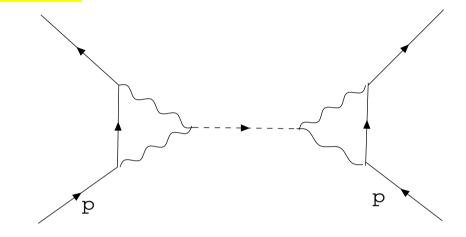
[Masso, Redondo '06]

 \Rightarrow Even more sub-eV particles and fields, e.g. light U(1) bosons mixing with photon

[Abel et al. '06;Foot,Kobakhidze '07]

A. Ringwald (DESY)

Liverpool, March 2007


4. Problems of Particle Interpretations

- Energy loss of stars:
 - ALPs: Primakoff $\gamma Z \rightarrow \phi Z$
 - MCPs: plasmon decay $\gamma^* \to \epsilon^+ \epsilon^-$
- ALP 0⁺: Non-Newtonian force,

$$V(r) = G \frac{m_1 m_2}{r} + \frac{y^2}{4\pi} \frac{n_1 n_2}{r} e^{-m_{\phi} r}$$

from Yukawa coupling

$$\mathcal{L}_{\phi pp} = y\phi\overline{\Psi}_p\Psi_p$$
 $y \simeq \frac{3}{2}\frac{\alpha}{\pi}(gm_p)\log\frac{\Lambda}{m_p}$

[Adelberger et al. '06]

From torsion-balance experiment:

$$g < 4 \times 10^{-17} \,\text{GeV}^{-1}$$

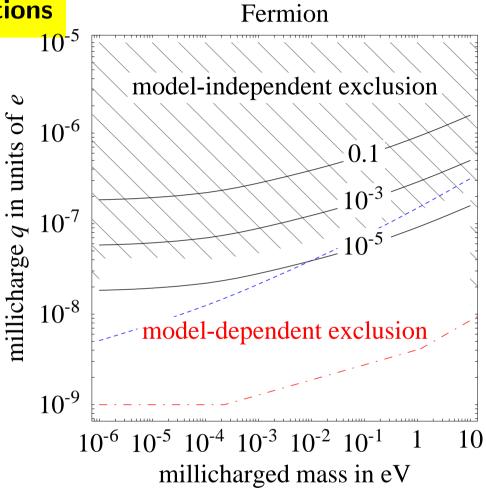
for
$$m_{\phi} = 1 \, \mathrm{meV}$$
; $\Lambda \gg m_p$

[Dupays et al. '06; Adelberger et al. '06]

Way out: ALP 0^+ couples only to additional light U(1) bosons mixing with photon

Liverpool, March 2007

4. Problems of Particle Interpretations


• Distortion of CMB spectrum through $\gamma + \gamma \rightarrow \epsilon^+ + \epsilon^-$:

$$\epsilon \lesssim 10^{-7}$$

 In slight clash with pure MCF interpretation of PVLAS, which requires

$$\epsilon \sim (8-9) \times 10^{-7}$$

How model dependent?

[Melchiorri, Polosa, Strumia '07]

5. Conclusions

• The evidence for a vacuum magnetic dichroism and birefringence by PVLAS has triggered a lot of theoretical and experimental activities:

- Particle interpretations alternative to ALP interpretation: e.g. MCP
- Models, which evade strong astrophysical and cosmological bounds on such particles, have been found. Require typically even more WILPs than just the ones introduced for the solution of the PVLAS puzzle
- Decisive laboratory based tests of particle interpretation of PVLAS anomaly in very near future. More generally, experiments will dig into previously unconstrained parameter space of above mentioned models
- Experiments exploiting low energy photons may give information about fundamental particle physics complementary to the one obtained at high energy colliders