Long-lived charged massive particle and its effect on cosmology

Kazunori Kohri (郡 和範)

Physics Department, Lancaster University

Kawasaki, Kohri, Moroi, PLB625 (2005) 7

Kawasaki, Kohri, Moroi, PRD71 (2005) 083502

Kohri, Moroi, Yotsuyanagi, PRD73 (2006) 123511 Kohri, Takayama, hep-ph/0605243 Kanzaki et al, hep-ph/0609246

Kawasaki, Kohri, Moroi, hep-ph/0703122

Abstract

- The Standard BBN (SBBN) approximately agrees with observations.
- In SUSY/SUGRA cosmology, reheating temperature after Inflation should be low, in order to solve the <u>"gravitino problem."</u>
- We may solve the Lithium problems in SUSY cosmology scenarios
- Dark matter may be neutralinos or gravitinos which are nonthermally produced by decaying particles.

Time evolution of light elements

Observational Light Element Abundances Fukugita, Kawasaki (2006) • He4 $Y_{p} = 0.2516 \pm 0.004$ Peimbert, Lridiana, Peimbert (2007) Izotov, Thuan, Stasinska (2007) • D/H $D/H = (2.82 \pm 0.26) \times 10^{-5}$ O'Meara et al. (2006) • Li7/H $\log_{10}(^{7}\text{Li/H}) = -9.63 \pm 0.06 (\pm 0.3)_{\text{syst}}$ Melendez,Ramirez(2004) • Li6/H $^{6}Li / ^{7}Li < 0.046 \pm 0.022 \pm 0.084$ Asplund et al(2006) • He3/D ³He/D < 0.83 + 0.27Geiss and Gloeckler (2003)

Introduction of SUSY Supersymmetry (SUSY)

Solving "Hierarchy Problem"

Realizing "Coupling constant unification in GUT"

Gravity mediated SUSY breaking model

Observable sector quark, squark, ... Only through gravity

Hidden sector _SUSY M_{SUSY}

Masses of squarks and sleptons

 $m_{\tilde{q}}, m_{\ell} = M_{SUSY}^2 / M_{p/} = 10^2 - 10^3 \text{ GeV}$ $(M_{SUSY} = 10^{10} - 10^{11} \text{ GeV})$

Gravitino mass

 $M_{3/2} = M_{SUSY}^2 / M_{p/} = 10^2 - 10^3 \text{ GeV}$

Gravitino problem (old version -1)

Cosmological gravitino problem

If gravitinos were abundant as photons,

 $\frac{n_{3/2}}{n_{\gamma}} \sim \mathcal{O}(1)$

1) When gravitino decays after BBN epoch $(\psi_{\mu} \rightarrow \gamma + \tilde{\gamma})$

 $\tau_{3/2} \simeq 4 \times 10^8 \sec \left(\frac{m_{3/2}}{100 \text{GeV}}\right)^{-3} \checkmark \qquad \text{Long lifetime} \\ \text{only through gravity} \\ \text{Then,} \qquad \frac{n_B}{n_\gamma} \ll 10^{-10} \\ \clubsuit \qquad \text{to avoid the problem} \\ m_{3/2} \gtrsim 100 \text{TeV} \qquad (\text{Weinberg 82}) \\ \end{array}$

Gravitino problem (old version -2)

2) If gravitino is stable, $\Omega_{3/2} \lesssim 1$

 $m_{3/2} \lesssim 1 {\rm keV}$

(Pagel, Primack 82)

Gravitino with $m_{3/2} \sim 100 {
m GeV}$ is exclude ?

No. Inflation dilutes gravitinos!

Gravitino production after inflation

I) Inflation dilutes primordial gravitinos

$$n_{3/2} \,/\, s \to 0$$

II) Reheating process produces gravitinos again

$$Y_{3/2} \equiv \frac{n_{3/2}}{n_{\gamma}} \simeq 10^{-11} \left(\frac{T_R}{10^{10} \text{GeV}}\right)^1$$

Because,

$$\frac{\Delta n_{3/2}}{n_{\gamma}} \sim \Gamma \Delta t \\ \sim \frac{1}{M_G^2} T_R^3 \times \frac{M_G}{T_R^2} \\ \propto T_R$$

Gravitino Decay and BBN

1. <u>Gravitinos are unstable in Gravity Mediation</u> SUSY

$$\tau(\psi_{3/2} \rightarrow \gamma + \tilde{\gamma}) = 4 \times 10^8 \sec\left(\frac{m_{3/2}}{100 \text{ GeV}}\right)^{-3}$$

• Hadronic decay

• Radiative decay

$$\tau(\psi_{3/2} \rightarrow g + \tilde{g}) = 6 \times 10^7 \sec\left(\frac{\mathsf{m}_{3/2}}{100 \text{ GeV}}\right)$$

Radiative Decay

Non-thermal Li6 Production

Photodissociation

Kawasaki, Kohri, Moroi (2001)

Relation among variables

• <u>Yield variable and reheating temperature</u>

$$Y_{3/2} \equiv \frac{n_{3/2}}{n_{\gamma}} = 1.1 \times 10^{-11} \left(\frac{T_R}{10^{10} \, \text{GeV}} \right)$$

• Lifetime and mass

$$\tau(\psi_{3/2} \rightarrow \gamma + \tilde{\gamma}) = 4 \times 10^8 \sec\left(\frac{m_{3/2}}{100 \text{ GeV}}\right)^{-3}$$

<u>Upper bound on reheating temperature</u>

Kawasaki, Kohri, Moroi (2001)

 $T_{R} = 10^{9} \text{GeV} \left(Y_{3/2} / 10^{-12} \right)$ $m_{3/2} = 10^{3} \text{GeV} \left(\tau_{3/2} / 4 \times 10^{5} \text{sec} \right)^{-1/3}$

Hadronic Decay

<u>Hadronic decay</u>

Reno, Seckel (1988) 5. Dimopoulos et al.(1989)

Two hadron jets with $E_{jet} = m_{\chi}/3$

One hadron jet with $E_{jet} = m_{\chi}/2$

Hadron-fragmentation Monte Carlo event generator, JETSET 7.4 (PYTHIA 5.7) Sjostrand (1994)

Kohri (2001)

Electromagnetic stopping of emitted hadrons?

There is a question if high energy hadrons are stopped, until they scatter of f the ambient nuclei in the electromagnetic plasma of e^{\pm} and γ .

$$\mathcal{R}_{stop}(\mathcal{E}_{i},\mathcal{T},\mathcal{Y}p) \equiv \mathcal{N}_{\mathcal{N}}\int_{\mathcal{E}_{i}}^{\mathcal{E}_{th}} \langle \sigma\beta \rangle \left(\frac{d\mathcal{E}}{dt}\right)^{-1} d\mathcal{E}$$

where,

(I) If
$$R_{stop}(E_i, T, Yp) \ll 1$$
,

Hadrons are stopped electromagnetically

(II) If $R_{stop}(E_i, T, Yp) >> 1$,

Hadrons scatter off the background nuclei with the energy E, which is obtained by

$$n_{N}\int_{E_{i}}^{E_{f}} \langle \sigma\beta\rangle \left(\frac{dE}{dt}\right)^{-1} dE = 1$$

Contours of final energy of energetic neutron just before its collision

(I) If $R_{stop}(\overline{E_i}, T, Yp) \ll 1$,

Inter-conversion occurs between n and p by stopped hadrons Reno and Seckel (1988)

Kohri (2001)

Effective at early stage of BBN

(II) If $R_{stop}(E_{i}, T, Yp) >> 1$, Destruction of Helium4 occurs by energetic hadrons S. Dimopoulos et al(1989) Effective at late stage of BBN Kawasaki, Kohri, Moroi(2004)

(II) Late stage of BBN

Hadronic showers and "Hadro-dissociation"

S. Dimopoulos et al. (1988) Kawasaki, Kohri, Moroi (2004)

Non-thermal Li, Be Production by energetic hadrons

Dimopoulos et al (1989)

1 T(He3) - He4 collision $T + {}^{4}\text{He} \rightarrow {}^{6}\text{Li} + n \quad [8.4 \text{ MeV}]$ ${}^{3}\text{He} + {}^{4}\text{He} \rightarrow {}^{6}\text{Li} + p \quad [7.0 \text{ MeV}]$ 2 He4 - He4 collision

 $^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{6}\text{Li}, {}^{7}\text{Li}, {}^{7}\text{Be} + \dots$

For massive particle X

Contours of light elements in $(m_x Y_x, \tau_x)$ plane in "hadrodissociation" scenario

<u>Upper bound on reheating temperature</u>

Kawasaki, Kohri, Moroi (2004)

$$B_{h}(\psi_{\mu} \rightarrow \tilde{\gamma} + q + \bar{q}) = 10^{-3}$$
$$T_{R} = 10^{9} GeV(Y_{3/2} / 10^{-12})$$
$$m_{3/2} = 10^{3} GeV(\tau_{3/2} / 4 \times 10^{5} \text{sec})^{-1/3}$$

<u>Upper bound on reheating temperature</u>

Kawasaki, Kohri, Moroi (2004)

$$B_h(\psi_\mu o g + \tilde{g}) = 1$$

 $T_R = 10^9 \text{GeV}(Y_{3/2}/10^{-12})$
 $m_{3/2} = 500 \text{GeV}(\tau_{3/2}/4 \times 10^5 \text{sec})^{-1/3}$

Lithium 7

a factor of two or three smaller !!!

• Expected that there is little depletion in stars.

 $^{7}\text{Li}/\text{H} = 2.19^{+2.2}_{-1.1} \times 10^{-10}$ (1 σ)

Bonifacio et al.(2002)

Melendez,Ramirez(2004)

⁷ Li / H = $1.23^{+0.68}_{-0.32} \times 10^{-10}$ (1 σ)

Ryan et al.(2000)

Lithium 6

Asplund et al.(2006)

•Observed in metal poor halo stars in Pop II

●⁶Li plateau?

6
Li / 7 Li = 0.01 – 0.09

 7 Li/H \approx (1.1–1.5)×10⁻¹⁰ still disagrees with SBBN

Astrophysically, factor-of-two depletion of Li7 needs a factor of O(10) Li6 depletion (Pinsonneault et al '02) We need more primordial Li6? Gravitino Dark Matter Scenario in Gauge Mediated SUSY Breaking

 $m_{3/2} < 10 GeV$

NLSP would be Slepton (stau, sneutrino) or Neutralino (Bino) CHArged Massive Particle (CHAMP) Kohri and Takayama, hep-ph/0605243

Many candidates of long-lived CHAMP stau, ...

More massive elements capture CHAMP earlier $T_c \sim E_{bin}/40 \sim 10 \text{ keV}$ Nucleus⁺ ($E_{bin} \sim \alpha^2 \text{ m}_i \sim 100 \text{ keV}$)

CHAMP captured-nuclei change the nuclear reaction rates

C-

CHAMP BBN (CBBN) may solve Lithium problem?

Short lifetime (< 10⁶ sec)

- Only Be7 and Li7 captures CHAMP
- Be7 (n,a)He4 and Li7(p,a)He4 are enhanced

Long lifetime (> 10⁶ sec)

- proton, D, and T are captured
- He4(d, g)Li6 and Be7(d, p a)He4 are enhancecd

Pospelov's effect

Pospelov (2006), hep-ph/0605215

 CHAMP bound state with ⁴He can enhance the rate

 $D + (^{4}He, C^{-}) \rightarrow ^{6}Li + \gamma$

• Enhancement of cross section $\sim (\lambda_{\gamma}/a_{Bohr})^5 \sim (30)^5 \sim 10^8$

Confirmed by Hamaguchi etal (07), hep-ph/0702274

BBN in stau NLSP and gravitino LSP Scenario Kawasaki, Kohri, Moroi (07)

Discussion and Conclusion

- The radiative and hadronic decay-products destroy He4, by which D,He3, Li6 are overproduced.
- The constraint on reheating temperature after primordial inflation becomes very stringent in Hadronic decay scenario in gravity mediated SUSY breaking scenario.

 $T_R \le 3 \times 10^5 \text{GeV} - 10^7 \text{ GeV}$ (for $m_{3/2} = 100 \text{ GeV} - 10 \text{TeV}$)

 CHAMP BBN is attractive (Kohri and Takayama '06) or might be dangerous? (Pospelov hep-ph/0605215). Then DM should be a stable gravitino in gaugemediated SUSY breaking scenario.