**UK BSM 2007** 

Liverpool 29<sup>th</sup> of March 2007

# SUSY breaking in a meta-stable vacuum: applications to model building

Valya Khoze Durham University

- Introduction (MSB versus DSB)
- The ISS model of MSB

Intriligator, Seiberg, Shih

hep-th/0602239

- Model Building with MSB:
- Naturalised Susy GUT

S Abel, J Jaeckel, VVK

hep-th/0703086

 Meta-stable susy breaking within the Standard Model

S Abel, VVK

hep-ph/0701069

# Introduction Conventional picture of DSB: SUSY broken everywhere! $V_{DSB} > 0$

 $\langle \Phi \rangle$ 

 $\Phi$ 

## Problems with the DSB scenarios

 DSB is non-generic: many constraints on theories with DSB. Such as the Witten index constraint and the Rsymmetry constraint.

 DSB is hard to analyze: in particular, one needs to know the Kahler potential, which is not protected by holomorphicity.

# ISS picture of meta-stable SUSY breaking

Intriligator, Seiberg, Shih hep-th/0602239



see also an early idea of

J Ellis, C Llewellyn Smith, G Ross PLB 114 (1982) 227

# Effective potential of N=1 SQCD with massive quarks



# **Seiberg Duality**

Microscopic: (electric)

 $W_{\rm cl} = m {
m Tr} \, Q \tilde{Q}$ 

|            | $SU(N_c)_{ m gauge}$ | $SU(N_f)$ | $SU(N_f)$          |
|------------|----------------------|-----------|--------------------|
| Q          | $N_c$                | $N_{f}$   | 1                  |
| $	ilde{Q}$ | $\overline{N}_{c}$   | 1         | $\overline{N}_{f}$ |

Macroscopic: SU(N) gauge theory with  $N := N_c - N_f$ (magnetic)  $W_{cl} = h \operatorname{Tr} \varphi \Phi \tilde{\varphi} + h \mu^2 \operatorname{Tr} \Phi$ 

magnetic quarks  $\varphi$  and  $\tilde{\varphi}$  originate from barions singlet field  $\Phi$  originates from mesons

$$\Phi = \frac{Q\tilde{Q}}{\Lambda_L} \qquad \mu^2 := \Lambda_L m$$

# Consider the macroscopic theory

We take  $N_c + 1 < N_f \le \frac{3}{2}N_c$  where the magnetic theory is IR free

 $\begin{array}{cccc} SU(N)_{\text{gauge}} & SU(N_f) & SU(N_f) \\ & \begin{matrix} N & & N_f & & 1 \\ \hline \overline{N} & & 1 & & \overline{N}_f \\ & 1 & & \overline{N}_f & & N_f \end{matrix}$ 

Electric  

$$SU(N_c)$$
  
 $= -\Lambda_L$   
Magnetic  
 $SU(N_f - N_c)$ 

 $b_0 = 3N - N_f < 0$  $e^{-8\pi^2/g^2(E)} = \left(\frac{E}{\Lambda_L}\right)^{-b_0}$ 

 $N := N_f - N_c \qquad \qquad N_f > 3N$ 

•  $\beta$ -function is positive,

 $\varphi$ 

 $\tilde{\varphi}$ 

Φ

- the theory is free in the IR and
- strongly coupled in the UV
- where it develops a Landau pole at scale  $\Lambda_L$

 $N_c + 1 \le N_f < \frac{3}{2}N_c$  For example,  $N_c = 5$ ,  $N_f = 7$ .

Since weakly coupled in the IR: take the canonical Kahler potential  $K = \varphi \bar{\varphi} + \tilde{\varphi} \bar{\tilde{\varphi}} + \Phi \bar{\Phi}$ 

The tree level superpotential of the theory is an O'Raifeartaigh model and breaks SUSY!

$$W_{cl} = h \operatorname{Tr}_{N_f}(\varphi^a \Phi \tilde{\varphi}_a) - h \mu^2 \operatorname{Tr}_{N_f} \Phi$$

The rank condition gives SUSY-breaking  $|vac\rangle_+$ :

$$F_{\Phi_j^i} = h\left(\varphi_i^a \tilde{\varphi}_a^j - \mu^2 \delta_i^j\right) \neq 0$$

cannot be satisfied since  $\varphi_i^a \tilde{\varphi}_a^j$  has rank  $N = N_f - N_c < N_f$ 

Metastable vacuum  $|vac\rangle_+$ :

$$\langle \varphi \rangle = \langle \tilde{\varphi}^T \rangle = \mu \left( \begin{array}{c} \mathbb{1}_N \\ 0_{N_f - N} \end{array} \right) , \quad \langle \Phi \rangle = 0 , \qquad V_+ = (N_f - N) |h^2 \mu^4|$$

- Supersymmetry is broken since  $V_+ > 0$ . It originates from the rank condition.
- SU(N) gauge group is completely Higgsed near the origin by the vevs of  $\varphi$  and  $\tilde{\varphi}$  and  $m_{\text{gauge}} = g\mu$ .
- ISS showed that  $|vac\rangle_+$  has no tachyonic directions at one loop. It is classically stable, and quantum-mechanically is long-lived.

#### And the SUSY preserving minima $|vac\rangle_0$ ?

Consider giving a VEV to  $\Phi$ 

- Then  $m_{\varphi}, m_{\tilde{\varphi}} = h\Phi_0$  and we can integrate out  $\varphi, \tilde{\varphi}$ .
- The  $\beta$ -function reverses sign since now,  $N_f = 0$ , and the theory confines with  $W_{dyn} = N\Lambda_{eff\,SYM}^3$
- The non-perturbative contribution to superpotential is determined by *integrating out heavy*  $\varphi$  and  $\tilde{\varphi}$  modes;

 $W = W_{\rm cl} + W_{\rm dyn}$ 

$$W_{\rm dyn} = N \left( \frac{h^{N_f} \det_{N_f} \Phi}{\Lambda_L^{N_f - 3N}} \right)^{\frac{1}{N}}$$

#### SUSY preserving minima $|vac\rangle_0$ at

$$\langle \varphi \rangle = \langle \tilde{\varphi} \rangle = 0 \quad ; \quad \langle \Phi \rangle = \Phi_0 = \mu \gamma_0 \mathbf{1}_{N_f}$$

$$\gamma_0 = \left( h \epsilon^{\frac{N_f - 3N}{N_f - N}} \right)^{-1} \gg 1 \quad ; \quad \epsilon := \mu / \Lambda_L \ll 1$$

It follows that

 $\mu \ll \Phi_0 \ll \Lambda_L$ 

SUSY vacua are far away from the origin in  $\Phi$  direction, but below  $\Lambda_L$ . The potential is very wide.

- There are actually  $N_c$  SUSY preserving vacua differing by phase  $e^{2\pi i/N_c}$  as required by Witten index of the microscopic theory!
- It is always possible by choosing  $\epsilon \ll 1$  to ensure that the decay of  $|vac\rangle_+$  is longer than the age of the Universe.

The key features of this effective potential are

(1) the large distance between the two vacua,  $\gamma_0 \gg 1$ , and

(2) the slow rise of the potential to the left of the SUSY preserving vacuum.



#### A natural question:

Why did the Universe start from the non-supersymmetric vacuum in the first place ?

Our answer: in the ISS model thermal effects drive the Universe to the susy-breaking vacuum even if it starts after inflation in the susy-preserving one.

See: Joerg Jaeckel's talk tomorrow:

`Lving on the edge: why our universe preferred a meta-stable state'

| S Abel, C-S Chu, J Jaeckel, VVK | hep-th/0610334 |  |  |  |
|---------------------------------|----------------|--|--|--|
| S Abel, J Jaeckel, VVK          | hep-th/0611130 |  |  |  |
| N Craig, P Fox, J Wacker        | hep-th/0611006 |  |  |  |
| W Fischler <i>et al</i>         | hep-th/0611018 |  |  |  |
| L Anguelova, R Ricci, S Thomas  | hep-th/0702168 |  |  |  |

# Model Building with MSB



## **Gauge Mediation simplified:**

- M Dine, J Mason
- R Kitano, H Ooguri, Y Ookouchi
- H Murayama, Y Nomura
- C Csaki, Y Shirman, J Terning
- O Aharony, N Seiberg

hep-ph/0611312 hep-ph/0612139 hep-ph/0612186 hep-ph/0612241 hep-ph/0612308 One can think of

# Two orthogonal approaches to use MSB for model building:

#### Naturalised Supersymmetric Grand Unification



Use Hidden sectors to break susy and to generate and explain all mass scales in the theory.

-including the GUT-scale and the mu-parameter (but proton decay...) Abel-Jaeckel-VVK hep-ph/0703086

#### Visible sector susy-breaking in the Standard Model

No hidden sectors, no GUTs, direct link between susybreaking and electroweak breaking (but price to pay...) Abel-VVK hep-ph/0701069

#### Naturalised Supersymmetric Grand Unification



- *MSB-sector* is responsible for metastable supersymmetry breaking.
- *R-sector* dynamically generates all mass-parameters in the full model by retrofitting.
- The visible sector is the SU(5) susy *GUT-sector*.

GUT SU(5) is the gauged  $SU(N_f = 5)$  flavour symmetry of the R-sector, and the adjoint Higgs  $\Phi_{GUT}$  is the traceless part of the R-sector mesons  $\tilde{Q}_R Q_R$ .

GUT-sector is coupled to the MSB-sector via messenger fields f and  $\tilde{f}$ .

#### Interactions between the sectors

Superpotential  $\mathcal{W}_1$  is responsible for the retrofitting.

$$\mathcal{W}_1 = tr(W_R^2) \left[\frac{1}{g_R^2} + \frac{a_1}{16\pi^2 M_p^2} tr(\tilde{Q}_{MSB} Q_{MSB})\right]$$

$$+ \frac{a_2}{16\pi^2 M_p^2} tr(\tilde{f}f) + \frac{a_3}{16\pi^2 M_p^2} tr(\tilde{H}H)]$$

The SYM develops a gaugino condensate  $\langle W_R^2 \rangle = \langle \lambda_R^2 \rangle = \Lambda_R^3$ . This generates masses  $m_{Q_{MSB}}$ ,  $m_H$  of the order  $\sim \Lambda_R^3 / M_p^2$ .

$$\mu_{MSSM} = \frac{a_3}{16\pi^2} \frac{\Lambda_R^3}{M_p^2} \gtrsim 10^2 \div 10^3 \,\text{GeV} \text{ for } \Lambda_R \gtrsim 10^{14} \,\text{GeV}$$

$$\mu_{MSB}^2 \equiv \Lambda_{MSB} m_{Q_{MSB}} = \frac{a_1}{16\pi^2} \frac{\Lambda_{MSB} \Lambda_R^3}{M_p^2}$$

#### Interactions between the sectors

Superpotential  $\mathcal{W}_2$  couple the messenger fields of the GUT sector and the quark bilinears from the hidden sectors

$$\mathcal{W}_2 = \frac{b_1}{M_p} tr(\tilde{f}f) tr(\tilde{Q}_{MSB}Q_{MSB}) + \frac{b_2}{M_p} (\tilde{f}f) (\tilde{Q}_R Q_R)$$

 $\langle \hat{Q}_R^i Q_R^j \rangle$  will be generated dynamically in the R-sector:

$$\langle \tilde{Q}_R^i Q_R^j \rangle = M_{GUT}^2 \operatorname{diag}(+1, +1, +1, -1, -1)$$

The mass term for the messengers is then

$$m_f = b_2 \frac{M_{GUT}^2}{M_p}$$

#### Interactions between the sectors

Superpotential  $\mathcal{W}_3$  couples the Higgs (anti)-fundamental fields of the GUT sector to the Higgs which arises from mesons of the R-sector

$$\mathcal{W}_3 = \frac{\kappa}{M_p} H \cdot \left( tr(\tilde{Q}_R Q_R) + \tilde{Q}_R Q_R \right) \cdot \tilde{H}$$

These two terms are included to raise the mass of the Higgs triplet fields and do not give any additional mass to the doublets since

$$\begin{split} \langle tr(\tilde{Q}_R^i Q_R^j) \rangle + \langle \tilde{Q}_R^i Q_R^j \rangle &= 2M_{GUT}^2 \operatorname{diag}(+1, +1, +1, 0, 0) \\ \\ m_{H_3, \bar{H}_3} \approx 2\kappa M_{GUT}^2 / M_p \end{split}$$

#### R-sector-generation of the GUT scale

 $N_f = 5 < N_c - 1$ 

There is an Affleck-Dine-Seiberg superpotential in the R-sector which leads to run-away vacua and renders the theory inconsistent. We stabilise it again with a retrofitting

$$\mathcal{W}_R = \left(\frac{\Lambda_{SQCD}^{3N_c - N_f}}{\det_{N_f}(\tilde{Q}_R Q_R)}\right)^{\frac{1}{N_c - N_f}} + \frac{d}{2M_p} tr(\tilde{Q}_R Q_R)^2$$

The F-flatness solution gives for the meson  $M_{ij} = \tilde{Q}_R^i Q_R^j$ 

$$\langle M_{ii} \rangle^2 = \frac{M_p}{d} \left( \frac{\Lambda_{SQCD}^{3N_c - N_f}}{\det_{N_f} M} \right)^{\frac{1}{N_c - N_f}}$$

in the diagonal basis

#### R-sector-generation of the GUT scale

For  $N_f = 5$  there are three inequivalent discrete solutions

 $\langle M_{ij} \rangle = \langle M \rangle \operatorname{diag}(1, 1, 1, 1, 1) => SU(5)$ 

$$\langle M_{ij} \rangle = \langle M \rangle \operatorname{diag}(1, -1, -1, -1, -1) => SU(4)$$

 $\langle M_{ij} \rangle = \langle M \rangle \operatorname{diag}(1, 1, 1, -1, -1) => SU(3) \times SU(2) \times U(1)$ 

The VEV of the meson field should be expressed in terms of the dynamical scale  $\Lambda_R$  of the effective pure SYM  $SU(N_c - N_f)$  theory in the R-sector

$$\langle M \rangle \, \equiv \, M_{GUT}^2 \, = \, \frac{1}{\sqrt{d}} \sqrt{\Lambda_R^3 M_p}$$

#### R-sector-generation of the GUT scale

Eliminating  $\Lambda_R$  we get at a relation between  $\mu_{MSSM}$  and  $M_{GUT}$ 

$$M_{GUT}^{2} = \frac{4\pi}{\sqrt{a_{3} d}} \left(\mu_{MSSM} M_{p}^{3}\right)^{1/2}$$

With  $M_p \sim 10^{19} \, {\rm GeV}$  and  $\mu_{MSSM} \sim 10^2 \div 10^3 \, {\rm GeV}$  we find

$$M_{GUT} \sim 10^{15} \div 10^{17} \, {\rm GeV}$$

if we choose the constants  $a_3$ , d in the range  $10^{-3} \div 10^1$ .

#### Metastable supersymmetry breaking

Use canonically normalised 
$$\Phi_{MSB}=rac{Q_{MSB} ilde{Q}_{MSB}}{\Lambda_{MSB}}$$
 .

Near  $\Phi_{MSB}=0$  supersymmetry is broken by the rank condition at the scale  $\mu_{MSB}$  and

$$\langle tr(F_{\Phi^{ij}_{MSB}})\rangle \, \sim \, \mu^2_{MSB}$$

This supersymmetry breaking is gauge mediated to the GUT sector by the messengers  $\tilde{f}$ , f and generates Majorana mass terms for the gauginos

$$m_{\lambda} \sim b_1 \frac{g^2}{16\pi^2} \frac{\Lambda_{MSB}}{M_p} \frac{tr(F_{\Phi_{MSB}})}{m_f} \sim 1 \,\mathrm{TeV}$$

by choosing  $\Lambda_{MSB}$  which is a free parameter.

#### Naturalised GUT Summary

A simple model of an SU(5) GUT with gauge mediated susy-breaking from a metastable vacuum of a hidden sector.

All mass parameters and hierarchies of the model are generated dynamically

$$\mu_{MSSM} = \frac{a_3}{16\pi^2} \frac{\Lambda_R^3}{M_p^2} \sim 10^2 \div 10^3 \,\text{GeV}$$
$$M_{GUT}^2 = \frac{4\pi}{\sqrt{a_3 \, d}} \left(\mu_{MSSM} M_p^3\right)^{1/2} , M_{GUT} \sim 10^{15} \div 10^{17} \,\text{GeV}$$

However, as typical for simple SU(5) GUT models, proton longevity remains a problem because the Higgs triplet is not sufficiently heavy  $m_{H_3,\bar{H}_3}\approx 2\kappa M_{GUT}^2/M_p$ 

A natural avenue to explore in this class of models is embedding the SU(5) structure within SO(10).

S. A. Abel, S. Förste, J. Jaeckel and V. V. Khoze, in preparation

Alternative: Metastability within the SM  $SU(N)_{\text{ISS magnetic}} \equiv SU(2)_L$ 

In this approach ISS model is not a Hidden sector. It is embedded into the electroweak sector of the Standard Model. Total gauge group of the theory is  $SU(3)_c \times SU(2)_L \times U(1)_Y$ .

Electroweak Higgses will be identified with  $\varphi$  fields of the ISS.

The  $SU(2)_L$  gauge factor is strongly coupled in the UV at  $\Lambda_L > M_{\rm Pl}$ . Perfectly OK to work with the 'magnetic' version ('electric' version is unknown and not needed).

#### A "no-go" theorem

 $STr(M^2) = 0$  at tree-level; can be applied to differently charged fields independently, so that for example it predicts

$$m_{\tilde{d}}^2 + m_{\tilde{s}}^2 + m_{\tilde{b}}^2 \sim (5 \text{GeV})^2$$

To avoid this, we require that the SUSY breaking mass splittings are induced at 1-loop.  $M_W \approx g\mu$  and expect e.g.

$$M_{gluino} \sim \frac{1}{16\pi^2} \frac{F_{\Phi}}{m_R} \sim \frac{h\mu^2}{16\pi^2 m_R} \sim \frac{h}{16\pi^2} M_W$$

Need  $h \gg 1$ ; strong coupling in the Higgs sector to overcome the loop suppresson.

### Superpotential

Identify ISS Higgses  $\varphi_1$  and  $\varphi_2$  with electroweak Higgses. Metastable vacuum follows from the rank condition:  $N_f \geq 3$ .

Take  $N_f = 3$  and  $|\mu_1| > |\mu_2| > |\mu_3| > 0$ to avoid massless Goldstones.

$$W_{Higgs} = h \, Tr_{N_f} [\varphi \Phi \tilde{\varphi} - \mu^2 \Phi]$$

 $W_{Yuk} = \lambda_U Q \varphi_2 U + \lambda_D Q \varphi_1 D + \lambda_E L \varphi_1 E$ 

$$W_R = \frac{g^2}{16\pi^2} \frac{1}{m_R} Tr(\Phi) W_A^{\alpha} W_{\alpha}^A$$

|                | $SU(2)_L$ | $U(1)_Y$                                                       | $U(1)_{3}$                              | $U(1)_R$ | PQ             | L  | В              |
|----------------|-----------|----------------------------------------------------------------|-----------------------------------------|----------|----------------|----|----------------|
| $\Phi_i^j$     | 1         | $\frac{1}{2}(\delta_{i1}-\delta_{i2}+\delta_{j2}-\delta_{j1})$ | $\tfrac{1}{2}(\delta_{j3}-\delta_{i3})$ | 2        | 0              | 0  | 0              |
| $\varphi$      |           | $-rac{1}{2}$ , $+rac{1}{2}$ ,0                               | 0,0,1                                   | 0        | 1              | 0  | 0              |
| $	ilde{arphi}$ | Ē         | $+rac{1}{2}$ , $-rac{1}{2}$ ,0                               | 0, 0, -1                                | 0        | -1             | 0  | 0              |
|                | Ē         | $-\frac{1}{2}$                                                 | 0                                       | 1        | $-\frac{1}{2}$ | 1  | 0              |
| E              | 1         | 1                                                              | 0                                       | 1        | $-rac{1}{2}$  | -1 | 0              |
| Q              | Ō         | $\frac{1}{6}$                                                  | 0                                       | 1        | $-\frac{1}{2}$ | 0  | $+\frac{1}{3}$ |
| D              | 1         | $\frac{1}{3}$                                                  | 0                                       | 1        | $-\frac{1}{2}$ | 0  | $-\frac{1}{3}$ |
| U              | 1         | $-\frac{2}{3}$                                                 | 0                                       | 1        | $-\frac{1}{2}$ | 0  | $-\frac{1}{3}$ |

 $W_{Yuk} = \lambda_U Q \varphi_2 U + \lambda_D Q \varphi_1 D + \lambda_E L \varphi_1 E$ 

$$W_{Higgs} = h \, Tr_{N_f} [\varphi \Phi \tilde{\varphi} - \mu^2 \Phi]$$
$$W_R = \frac{g^2}{16\pi^2} \frac{1}{m_R} Tr(\Phi) \, W_A^{\alpha} W_{\alpha}^A$$

#### SU(2) and SUSY breaking

There is a metastable vacuum follows from the rank condition. It breaks SUSY and the gauge symmetry

 $SU(2)_L \times U(1)_Y \longrightarrow U(1)_{QED}$   $F_{\Phi_{33}} = h\mu_3^2$   $\varphi_{i=1,2} = \tilde{\varphi}_{1,2} = \mu_i$   $M_W = g_2 \sqrt{\mu_1^2 + \mu_2^2}$ 

#### Effect of the R-breaking term

One-loop gluino masses

 $W_{\lambda} = \frac{\alpha_s Tr(\Phi)}{4\pi m_R} \mathcal{W}^{\alpha} \mathcal{W}_{\alpha}$  $M_{\lambda} = \frac{\alpha_s h \mu^2}{4\pi m_R}$ 

 $h \gg 1$  for  $M_{\lambda} \gtrsim 100$ GeV; Higgs sector is strongly coupled. (But decouples as  $h \to \infty$ .) Very heavy Higgsses.

Masses of squarks and sleptons are generated from gaugino masses as a 1-loop effect. Precisely like in gauge mediation.

# Summary MSSM: M is for Metastable

S Abel, VVK hep-ph/0701069

- No need for a hidden susy-breaking sector
- MSB occurs in the SU(2) x U(1) of the SM
- Direct link between the susy-breaking and electro-weak symmetry breaking
- Extremely compact low-energy SM-like theory
- But have to pay a price for breaking susy and electroweak symmetry in the same visible sector

=> strongly coupled Higgs sector

# Final Summary:

- The ISS model of MSB.
- Why the early Universe preferred the nonsupersymmetric vacuum

Model Building with MSB:

- Naturalised Susy Grand Unification
- Meta-stable susy breaking within the Standard Model