

Living on the Edge: Why the early Universe prefers the non-supersymmetric vacuum

Joerg Jaeckel IPPP - University of Durham

S Abel, C-S Chu, J.J., V.V. Khoze S Abel, J J, V.V. Khoze hep-th/0610334 hep-th/0611130

1. Introduction

Conventional picture of DSB

ISS picture of meta-stable SUSY breaking

Simplifies models (Avoids constraints on R-Symmetry.)

· May be calculable

New Opportunities for Model Building! (Valya Khoze)

Question of this talk

Why is the Universe in the non-supersymmetric vacuum?

Our answer: thermal effects drive the Universe to the susy-breaking vacuum even if it starts after inflation in the susypreserving one.

This happens for a large class of models that satisfy:
1. All fields of the theory (MSB, MSSM, messengers) are in thermal equilibrium. True for gauge mediation, direct mediation, and visible sector breaking.

(Excludes gravity-mediation.)

 SUSY preserving <vac₀> contains fewer light fields than the meta-stable <vac₊>.

Full Theory

• Full Theory

messengers

MSB sector

susy SM

Full Theory • messengers **MSB** sector susy SM

Thermal Equilibrium!

3. Getting to the metastable vacuum

Free Energy

 In a thermal environment systems try to minimize Free Energy:

- / / S = H'Wins at high T! Expect negative contribution!

Thermal effective potential

$$V_T(\Phi) = V_{T=0}(\Phi) + \frac{T^4}{2\pi^2} \sum_i \pm n_i \int_0^\infty \mathrm{d}q \, q^2 \ln\left(1 \mp \exp(-\sqrt{q^2 + m_i^2(\Phi)/T^2})\right)$$

- 1-loop expression.
- n_i are the numbers of degrees of freedom (+ corresponds to bosons; - to fermions.)
- $m_i^2(\Phi)$ are their masses as functions of $\langle \Phi \rangle$.
- Φ -dependence in the thermal correction is only through $m_i^2(\Phi)$

Thermal effective Potential

Thermal effective Potential

Preference of the SUSY breaking vacuum at high T arises because the SUSY breaking vacuum has more light d.o.f.!

Thermal effective Potential

Preference of the SUSY breaking vacuum at high T arises because the SUSY breaking vacuum has more light d.o.f.!

Massive Particles at Φ >0

• Quark masses:

$$m_arphi = h \Phi$$

- Quarks are heavy in the SUSY breaking minimum Φ^1 O!
- · Gluons are

Free at $\Phi=0$ Confined at $\Phi>0$

Gauge bosons are heavy in the SUSY breaking minimum Φ^1 0!

Thermal effects

No SUSY preserving Minimum T>T_{crit}!

Critical Temperature

University of Durham

Critical Temperature is surprisingly small! Critical Temperature=few¤µ!

Dynamical question: Enough Time?

• At T>T_{crit} field is free to roll.

Does it have enough time to get to Φ =0?

Rolling fast...

- Cooling of the Universe by Expansion
- Typical timescale:

$$t_{cool} \sim \frac{1}{H_0} \sim \frac{M_{\rm P}}{T_0^2}$$

Compare to "Rolling time":

$$\Delta t = \operatorname{const'} \frac{\Phi_0}{T_0^2} \sim \frac{\Phi_0}{M_{\rm P}} t_{cool} \ll t_{cool}$$

Enough time to complete transition!

... and not overshooting

 Interactions with other fields (e.g. SM fields) provide damping!!!

Field oscillations die out exponentially!

$$\Phi_{max}(T) \sim \Phi_0 \sqrt{\frac{T}{T_0}} \exp\left(-\frac{\Gamma}{2}(t-t_0)\right)$$

$$\Gamma \sim T \longrightarrow \Gamma t_{cool} \sim \frac{M_{\rm P}}{T} \gg 1$$

4. Conclusions

- More light d.o.f.
 preferred
- The Universe is driven to the supersymmetry breaking meta-stable vacuum by thermal effects because it has more light d.o.f.
- Essentially any reheat temperature larger than a few times the supersymmetry breaking scale μ is sufficient to ensure that the Universe ends up in the desired nonsupersymmetric vacuum state.