tan(beta) Enhanced Yukawa Couplings for Supersymmetric Higgs Singlets at One-Loop

Robert N. Hodgkinson

Theoretical Particle Physics University of Manchester

5th October 2006

Based on RNH, A. Pilaftsis hep-ph/0612188

Robert N. Hodgkinson tan(beta) Enhanced Yukawa Couplings for Supersymmetric Higgs

・ロ と く 雪 と く 雪 と

э.

Outline

SUSY Higgs Singlets

- One Loop Singlet Couplings
 - tanβ Enhanced Graphs
 - General Effective Lagrangian
- Phenomenology 3
 - mnSSM Results
 - NMSSM Results

Conclusions

< □ > < 同 > < 回 > < 回 > < 回 >

э

Outline

One Loop Singlet Couplings

- $\tan\beta$ Enhanced Graphs
- General Effective Lagrangian

Phenomenology
 mnSSM Results
 NMSSM Results

Ocnclusions

・ロット (雪) (日) (日)

The Minimal Supersymmetric Standard Model

- Before SUSY breaking, models are defined by their gauge symmetries and Superpotential
- The MSSM superpotential contains only the Yukawa couplings and a Higgs mass term μ

$$\mathcal{W}_{\text{MSSM}} = h_l \hat{H}_1^T i \tau_2 \hat{L} \hat{E} + h_d \hat{H}_1^T i \tau_2 \hat{Q} \hat{D} + h_u \hat{Q}^T i \tau_2 \hat{H}_2 \hat{U} - \mu \hat{H}_1^T i \tau_2 \hat{H}_2$$

• μ should naturally be of the order of the Planck scale, but successful electroweak symmetry breaking requires it to be much smaller, of the order M_{SUSY}

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Effective μ Parameter

 Introduce a new Higgs field Ŝ and replace the μ term in the superpotential with

$$\mathcal{W} = \ldots + \lambda \hat{S} \hat{H}_1^T i \tau \hat{H}_2$$

• An effective μ term is then generated when \hat{S} develops a VEV v_S

$$u = \frac{\lambda v_{\rm S}}{\sqrt{2}}$$

 The Singlet Higgs Ŝ does not have tree level couplings to any SM fermions or gauge bosons

Breaking the Peccei-Quinn Symmetry

This new superpotential contains a Peccei-Quinn symmetry which must be broken.¹

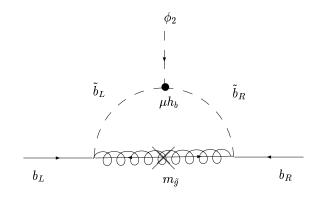
- NMSSM: add term $+\frac{1}{3}\kappa\hat{S}^3$ to \mathcal{W}
- mnSSM: use non-renormalisable supergravity terms + discrete Z⁵ or Z⁷ R symmetry
- UMSSM: additional U(1)' gauge symmetry
- sMSSM: additional U(1)' gauge symmetry + add $+\lambda_s \hat{S}_1 \hat{S}_2 \hat{S}_3$ to superpotential

...

¹See E. Accomando et al., arXiv: hep-ph/0608079 and references within and the second second

Outline

- One Loop Singlet Couplings
 - tanβ Enhanced Graphs
 - General Effective Lagrangian
- Phenomenology
 mnSSM Results
 NMSSM Results


4 Conclusions

・ロット (雪) (日) (日)

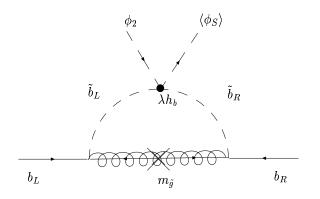
tanβ Enhanced Graphs General Effective Lagrangian

Dominant 1-loop Graphs

$\tan\beta$ Enhanced MSSM coupling ²

²T. Banks, Nucl. Phys. B **303** (1988) 172;

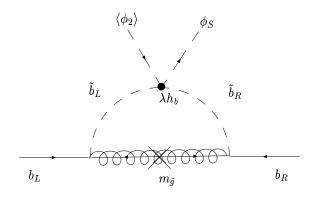
L.J. Hall, R. Rattazzi and U. Sarid, arXiv: hep-ph/9306309 are


Robert N. Hodgkinson

tan(beta) Enhanced Yukawa Couplings for Supersymmetric Higgs

tanβ Enhanced Graphs General Effective Lagrangian

Dominant 1-loop Graphs


$\tan\beta$ enhanced MSSM+S coupling

tanβ Enhanced Graphs General Effective Lagrangian

Dominant 1-loop Graphs

$\tan\beta$ enhanced MSSM+S coupling

・ロット (雪) (日) (日)

tanβ Enhanced Graphs General Effective Lagrangian

Singlet Couplings

- ϕ_2 and ϕ_S do not couple to *b* quarks or τ s at tree level
- Loop corrections are known to produce an effective Yukawa coupling for φ₂ of the order ~ hSM_f for large tan β³
- Expect a corresponding one-loop coupling for φ_S of the order ~ (v/v_S) hSM_f

³eg. J.A. Coarasa, R.A. Jimenez and J. Sola, arXiv:hep-ph/9511402 🛌 💿

Calculating the Couplings- Higgs Low Energy Theorems

 HLET relates correlation functions which differ by the insertion of a zero momentum Higgs boson⁴

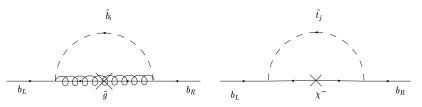
$$\lim_{\rho_H\to 0} \Gamma^{HAB}(\rho_H, \rho_A, \rho_B) = \frac{\partial}{\partial v} \Gamma^{AB}(\rho_A, -\rho_A)$$

 Can calculate one-loop couplings to fermions as the first derivative (w.r.t. the Higgs field) of the fermion self energy

$$\Delta_f^{\phi_i} = \frac{\mathbf{v} \mathbf{c}_\beta}{\sqrt{2}} \left\langle \frac{\partial \Delta_f}{\partial \phi_i} \right\rangle$$

⁴eg. B.A. Kniehl and M. Spira, arXiv: hep-ph/9505225

Robert N. Hodgkinson


tan(beta) Enhanced Yukawa Couplings for Supersymmetric Higgs

-

tanβ Enhanced Graphs General Effective Lagrangian

b Quark Self Energy

- SUSY contributions well known from the MSSM ⁵
- tan β enhanced terms from gluino-squark and chargino-squark loops

⁵eg. M. Carena, D. Garcia, U. Nierste and C.E.M. Wagner, hep-ph/9912516

Robert N. Hodgkinson

tan(beta) Enhanced Yukawa Couplings for Supersymmetric Higgs

tanβ Enhanced Graphs General Effective Lagrangian

Sbb Coupling

 The SQCD graph gives the dominant contribution after applying the HLET

$$\Delta_b^{\phi_S} \approx \left(\frac{2\alpha_S}{3\pi}\right) \frac{M_3\mu}{|\mathrm{Max}(M_3, M_{\tilde{Q}})|^2} \frac{v_2}{v_S}$$

- Shows expected v/v_S scaling behaviour, though this is broken by subdominant terms
- Coupling to $\tau^+\tau^-$ pairs can be calculated in the same way, giving a dominant contribution

$$\Delta_{\tau}^{\phi_{\rm S}} \approx \left(\frac{\alpha_{\rm w}}{4\pi}\right) \frac{\mu}{M_2} \frac{v_2}{v_{\rm S}}$$

tanβ Enhanced Graphs General Effective Lagrangian

Effective Lagrangian

General interaction Lagrangian for down-type quarks and leptons

$$-\mathcal{L}_{\phi\bar{b}b} = \bar{f}_R h_f \left\{ \Phi_1^{0*} + \frac{V_1}{\sqrt{2}} \Delta_f \left[\Phi_1, \Phi_2, S \right] \right\} f_L + \text{h.c.}$$

- Δ_f [Φ₁, Φ₂, S] encodes all quantum corrections
- Taking the VEV gives *m_f*, in terms of which we express the yukawa couplings

$$h_{f} = rac{g_{w}m_{f}}{\sqrt{2}M_{w}\left(1+\langle\Delta_{f}
angle
ight)}rac{1}{c_{eta}}$$

・ロ と く 雪 と く 雪 と

∃ \0<</p> \0

 $\tan\beta$ Enhanced Graphs General Effective Lagrangian

Interaction Lagrangian

In terms of the Higgs mass eigenstates,

$$-\mathcal{L}_{\phi\bar{f}f}^{\text{eff}} = \left(\frac{g_w m_f}{\sqrt{2}M_w}\right) \sum_{i=1}^3 g_{H_iff}^S H_i \bar{f} f + \left(\frac{g_w m_f}{\sqrt{2}M_w}\right) \sum_{j=1}^2 g_{A_jff}^P A_j \left(\bar{f} i \gamma^5 f\right)$$

with

$$g_{H_{f}ff}^{S} = \frac{1}{(1 + \langle \Delta_{f} \rangle)} \left[\frac{O_{1i}^{H}}{c_{\beta}} + \Delta_{f}^{\phi_{2}} \frac{O_{2i}^{H}}{c_{\beta}} + \Delta_{f}^{\phi_{5}} \frac{O_{3i}^{H}}{c_{\beta}} \right]$$
$$g_{A_{f}ff}^{P} = \frac{1}{(1 + \langle \Delta_{f} \rangle)} \left[-\left(t_{\beta} + \Delta_{f}^{a_{2}}\right) O_{1j}^{A} + \Delta_{f}^{a_{5}} \frac{O_{2j}^{A}}{c_{\beta}} \right]$$

・ロット (雪) (日) (日) tan(beta) Enhanced Yukawa Couplings for Supersymmetric Higgs

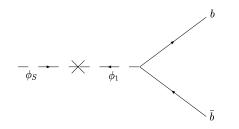
э

mnSSM Results NMSSM Results

Outline

- 2 One Loop Singlet Couplings
 - tanβ Enhanced Graphs
 - General Effective Lagrangian
- 3 Phenomenology
 - mnSSM Results
 - NMSSM Results

4 Conclusions


・ロット (雪) (日) (日)

э

mnSSM Results NMSSM Results

Higgs Scalar Mixing

- The one-loop couplings are $\tan \beta$ enhanced
- Can be comparable to SM yukawa couplings
- Tree-level couplings are also enhanced
- Mixing effects through \(\phi_1(a_1)\) tend to dominate unless suppressed

< ロ > < 同 > < 回 > < 回 > .

-

mnSSM Results NMSSM Results

General Strategy

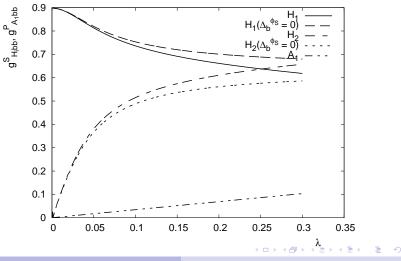
- Difficult to suppress φ₁ ↔ φ_S and φ₂ ↔ φ_S mixing simultaneously
- Mixing effects between the pseudoscalars can be easily suppressed
- Concentrate on regions of parameter space where the $A_1 \sim a_S$
- Assume ϕ_1 heavy so that it approximately decouples

y NMSSM Results

mnSSM Results

Benchmark Parameters

- Light sparticles in the loops
- S enters through squark mixing, take soft trilinear couplings large
- μ small to avoid $v/v_{\rm S}$ suppression


・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

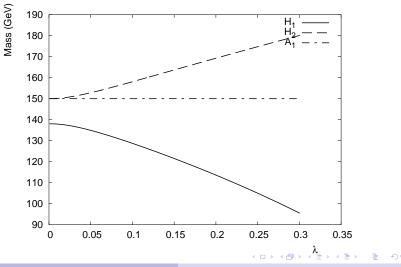
э.

mnSSM Results NMSSM Results

Conclusions

Light Higgs Couplings in the mnSSM

Robert N. Hodgkinson tan(beta) Enhanced


tan(beta) Enhanced Yukawa Couplings for Supersymmetric Higgs

mnSSM Results NMSSM Results

Conclusions

lusions

Light Higgs Masses in the mnSSM

Robert N. Hodgkinson

tan(beta) Enhanced Yukawa Couplings for Supersymmetric Higgs

mnSSM Results NMSSM Results

mnSSM Summary

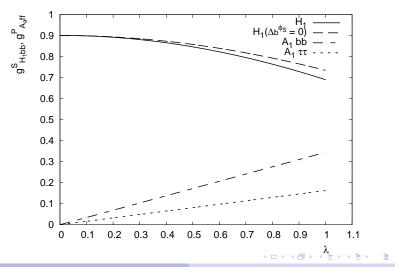
- Mixing between the scalar bosons rules out this scenario for $\lambda\gtrsim 0.3$
- Singlet contribution suppresses the light H₁ decay rate
- Can provide the dominant decay mechanism for a light singlet psuedoscalar

(日)

mnSSM Results NMSSM Results

NMSSM mass spectrum

- The NMSSM allows a light pseudoscalar in the spectrum
- This has recently attracted attention as an "invisible Higgs" scenario
- A light Higgs decays to A_1A_1 pairs
- A₁ thought to decay into photons if singlet dominated


Requires $A_{\lambda} \sim O(100 \text{GeV})$, $A_{\kappa} \sim O(5 \text{GeV})$, which can be naturally arranged in gauge/gaugino mediated SUSY breaking.

mnSSM Results NMSSM Results

Conclusions

y NM551

Light Higgs Couplings in the NMSSM

Robert N. Hodgkinson

tan(beta) Enhanced Yukawa Couplings for Supersymmetric Higgs

mnSSM Results NMSSM Results

NMSSM summary

- Both A₁ → bb̄ and A₁ → τ⁺τ⁻ channels can be significant even in the zero mixing limit
- Hadronic decays can not be neglected in the "invisible Higgs" scenario

Outline

・ロット (雪) (日) (日)

э

Summary and Outlook

- The one loop singlet couplings to down-type quarks and leptons are $\tan \beta$ enhanced, which compensates for their loop suppression
- Mixing can be small between the pseudoscalars and one loop couplings can dominate a_S decay
- In particular, this effect should be included in studies of the NMSSM "invisible Higgs" scenario
- Analogous singlet contribution to FCNCs may be significant as there is no tree-level competition

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@