CP violation in SUSY particle and Higgs production and decay

IEP Southampton Stefan Hesselbach School of Physics & Astronomy, University of Southampton

based on

Bartl, SH, Hidaka, Kernreiter, Porod, PRD **70** (2004) 035003 [hep-ph/0311338] Bartl, Fraas, SH, Hohenwarter-Sodek, Moortgat-Pick, JHEP **0408** (2004) 038 [hep-ph/0406190] Bartl, Fraas, SH, Hohenwarter-Sodek, Kernreiter, Moortgat-Pick, JHEP **0601** (2006) 170 [hep-ph/0510029] Bartl, Fraas, SH, Hohenwarter-Sodek, Kernreiter, Moortgat-Pick, hep-ph/0608065, accepted in EPJC Eriksson, SH, Rathsman, hep-ph/0612198

UKBSM 2007, Liverpool, 30 March, 2007

Outline

- Introduction
 - Supersymmetry with complex parameters
 - Complex parameters in sfermion and chargino/neutralino sectors
 - Higgs sector
- Aim: deriving the phases and analysing the CP structure of the theory
- CP-even observables
 - \rightarrow Production cross sections and branching ratios
- CP-odd observables
 - → Asymmetries via triple products and transverse beam polarization
 - → Rate asymmetries
- Summary and outlook

Introduction MSSM with complex parameters

General MSSM:

Many parameters can be complex

- New sources of CP violation
 - May help to explain baryon asymmetry of universe
 - Constraints from electric dipole moments (EDMs) of e, n, Hg, Tl
 [Ibrahim, Nath, '99; Barger, Falk, Han, Jiang, Li, Plehn, '01; Abel, Khalil, Lebedev, '01]
 [Oshima, Nihei, Fujita, '05; Pospelov, Ritz, '05; Olive, Pospelov, Ritz, Santoso, '05]
 [Abel, Lebedev, '05; Yaser Ayazi, Farzan, '06, '07]
- Physical phases of the parameters
 - A_f : trilinear couplings of sfermions
 - μ : Higgs-higgsino mass parameter
 - M_1 : U(1) gaugino mass parameter
 - M_3 : SU(3) gaugino mass parameter (gluino mass)

Introduction Complex parameters in \tilde{q} sector

with
$$\rightarrow M_{\tilde{t}_{RL}}^2 = (M_{\tilde{t}_{LR}}^2)^* = m_t \left(|A_t| e^{i\varphi_{A_t}} - \frac{|\mu| e^{-i\varphi_{\mu}}}{\tan \beta} \right)$$
 for stops \tilde{t}
 $\rightarrow M_{\tilde{b}_{RL}}^2 = (M_{\tilde{b}_{LR}}^2)^* = m_b \left(|A_b| e^{i\varphi_{A_b}} - |\mu| e^{-i\varphi_{\mu}} \tan \beta \right)$ for sbottoms \tilde{b}
 A_q : trilinear couplings of squarks $(\tan \beta = \frac{v_2}{v_1}$: ratio of Higgs VEVs)
 μ : Higgs-higgsino mass parameter

• Diagonalization:
$$\begin{pmatrix} \tilde{q}_1 \\ \tilde{q}_2 \end{pmatrix} = \mathcal{R}^{\tilde{q}} \begin{pmatrix} \tilde{q}_L \\ \tilde{q}_R \end{pmatrix} \rightarrow \text{complex mixing matrix } \mathcal{R}^{\tilde{q}}$$

■ $\mathcal{R}^{\tilde{q}}$ enters squark couplings $\rightarrow \varphi_{A_q}$, φ_{μ} dependence of σ , Γ, BR

Introduction Complex parameters in $ilde{\chi}^{\pm}$, $ilde{\chi}^{0}$ sectors

• Chargino (
$$\tilde{\chi}^{\pm}$$
) mass matrix: $X = \begin{pmatrix} M_2 & \sqrt{2} m_W s_\beta \\ \sqrt{2} m_W c_\beta & |\mu| e^{i\varphi_\mu} \end{pmatrix}$

Neutralino ($\tilde{\chi}^0$) mass matrix:

$$Y = \begin{pmatrix} |M_1|e^{i\varphi_{M_1}} & 0 & -m_Z s_W c_\beta & m_Z s_W s_\beta \\ 0 & M_2 & m_Z c_W c_\beta & -m_Z c_W s_\beta \\ -m_Z s_W c_\beta & m_Z c_W c_\beta & 0 & -|\mu|e^{i\varphi_\mu} \\ m_Z c_W c_\beta & -m_Z c_W s_\beta & -|\mu|e^{i\varphi_\mu} & 0 \end{pmatrix}$$

 $s_{\beta} \equiv \sin \beta$, $c_{\beta} \equiv \cos \beta$

 μ : Higgs-higgsino mass parameter M_1 : U(1) gaugino mass parameter $(M_2 : SU(2) \text{ gaugino mass parameter})$

Diagonalisation \Rightarrow complex mixing matrices \rightarrow enter $\tilde{\chi}^{\pm}$, $\tilde{\chi}^{0}$ couplings $\rightarrow \varphi_{M_{1}}, \varphi_{\mu}$ dependence of σ , Γ , BR

Introduction Higgs sector

MSSM: 2 Higgs doublets

 \rightarrow 5 physical Higgs particles at tree-level (h, H, A, H^{\pm})

- \tilde{t} and \tilde{b} loops ⇒ explicit CP violation in Higgs sector [Pilaftsis, '98] [Pilaftsis, Wagner, '99; Demir, '99, Carena, Ellis, Pilaftsis, Wagner, '00, '01; Choi, Drees, Lee, '00]
- P-even (h, H) and CP-odd (A) neutral Higgs mix

 \rightarrow 3 neutral mass eigenstates (H_1 , H_2 , H_3), mixing matrix O

- Impact on Higgs search [LEP Higgs Working Group, hep-ex/0602042] → MSSM Higgs search at LEP: no universal limit on m_{H_1}
- Spectrum calculation (masses m_{H_i} and mixing matrix O)
 - CPsuperH
 [Carena, Ellis, Pilaftsis, Wagner '00]
 [Lee, Pilaftsis, Carena, Choi, Drees, Ellis, Wagner '03; Ellis, Lee, Pilaftsis, '06]
 - FeynHiggs

[Heinemeyer '01; Frank, Heinemeyer, Hollik, Weiglein '02] [Frank, Hahn, Heinemeyer, Hollik, Rzehak, Weiglein, '06]

Branching ratios of squarks

Partial decay widths $\Gamma(\tilde{t}_1)$ and branching ratios $B(\tilde{t}_1)$ [Bartl, SH, Hidaka, Kernreiter, Porod, '03]

in scenario:

$$\begin{split} m_{\tilde{t}_L} > m_{\tilde{t}_R}, m_{\tilde{t}_1} = 379 \text{ GeV}, m_{\tilde{t}_2} = 575 \text{ GeV}, m_{\tilde{b}_1} = 492 \text{ GeV}, \\ |A_t| = 466 \text{ GeV}, |A_b| = 759 \text{ GeV}, \varphi_{A_b} = 0, |\mu| = 352 \text{ GeV}, \varphi_{\mu} = 0, \end{split}$$
(SPS 1a inspired)

 $|A_t|$ = 466 GeV, $|A_b|$ = $M_2 = 193 \text{ GeV}, |M_1|/M_2 = 5/3 \tan^2 \theta_W, \varphi_{M_1} = 0, \tan \beta = 10$

 \rightarrow pronounced phase dependence of $\Gamma(\tilde{t}_1 \rightarrow \tilde{\chi}_1^+ b)$

Branching ratios of squarks

Branching ratios $B(\tilde{b}_2)$ [Bartl, SH, Hidaka, Kernreiter, Porod, '03] in scenario: $M_Q < M_D$, $m_{\tilde{b}_1}$ = 350 GeV , $m_{\tilde{b}_2}$ = 700 GeV, $m_{\tilde{t}_1}$ = 170 GeV, $|A_t|$ = $|A_b|$ = 600 GeV, $\varphi_{A_t} = \pi$, $|\mu| = 300 \text{ GeV}$, $\varphi_{\mu} = \pi$, $M_2 = 200 \text{ GeV}$, $|M_1|/M_2 = 5/3 \tan^2 \theta_W$, $\varphi_{M_1} = 0$, $\tan \beta$ = 30, $m_{H^{\pm}}$ = 150 GeV $\tilde{b}_2 \rightarrow H_{1,2,3}\tilde{b}_1$ $B(\tilde{b}_2)$ $B(\tilde{b}_2)$ 0.14 0.12 $\tilde{b}_2 \rightarrow H^- \tilde{t}_{1,2}$ 0.12 0.1 0.1 0.08 0.08 0.06 0.06 0.04 0.04 $\tilde{b}_2 \rightarrow W^- \tilde{t}_{1,2}$ 0.02 0.02 $\tilde{b}_2 \rightarrow Z \tilde{b}_1$ 0 0 1.5 1.5 0.5 2 0.5 2 0 0 φ_{A_h}/π φ_{A_b}/π

Branching ratio of $H_1 ightarrow \gamma \gamma$

■ Impact of φ_{μ} on BR($H_1 \rightarrow \gamma \gamma$)

[Moretti, Munir, Poulose, '07]

Decay at 1-loop via f, W, H^{\pm} , \tilde{f} , $\tilde{\chi}^{\pm}$ loops

- CPV enters via phase dependence of
 - $m_{H_1} \rightarrow \text{small}$
 - H_i couplings (also to SM particles)
 - \tilde{f} , $\tilde{\chi}^{\pm}$ sector (masses, couplings to H_i)
- Scan over MSSM parameters
 - \rightarrow in average \sim 50% deviation between CPV and CPC case possible for parameter points with m_{H_1} in bins of size 4 GeV

Branching ratio of $H_1 ightarrow \gamma \gamma$

Detailed discussion of SUSY parameter dependence [SH, Moretti, Munir, Poulose, in preparation]

T-odd asymmetries in $ilde{\chi}^{\pm}, ilde{\chi}^{0}$ sectors

Chargino/neutralino production with subsequent three-body decays

$$e^+e^- \longrightarrow \tilde{\chi}_i + \tilde{\chi}_j \longrightarrow \tilde{\chi}_i + \tilde{\chi}_1^0 f \bar{f}^{(\prime)}$$

Full spin correlation between production and decay [Moortgat-Pick, Fraas, '97; Moortgat-Pick, Fraas, Bartl, Majerotto, '98, '99; Choi, Song, Song, '99]

• Amplitude squared
$$|T|^2 = PD + \sum_{a=1}^{3} \Sigma_P^a \Sigma_D^a$$

• In Σ_P^a and Σ_D^a : products like $i\epsilon_{\mu\nu\rho\sigma}p_i^{\mu}p_j^{\nu}p_k^{\rho}p_l^{\sigma}$

 \Rightarrow with complex couplings: real contributions to observables

 \Rightarrow CP violation at tree level

T-odd asymmetries in $ilde{\chi}^{\pm}, ilde{\chi}^{0}$ sectors

Triple products:
$$\mathcal{T} = \vec{p}_{e^-} \cdot (\vec{p}_f \times \vec{p}_{\bar{f}^{(\prime)}})$$
 or $\mathcal{T} = \vec{p}_{e^-} \cdot (\vec{p}_{\tilde{\chi}_j} \times \vec{p}_f)$

 $\rightarrow \text{T-odd asymmetry:} \quad A_T = \frac{\sigma(\mathcal{T} > 0) - \sigma(\mathcal{T} < 0)}{\sigma(\mathcal{T} > 0) + \sigma(\mathcal{T} < 0)} = \frac{\int \text{sign}(\mathcal{T}) |T|^2 d\text{Lips}}{\int |T|^2 d\text{Lips}}$

 — CP-odd, if final state interactions and finite-widths effects can be
 neglected

T-odd asymmetry in $ilde{\chi}^0$ sector

Asymmetry A_T for $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \ell^+ \ell^-$, $\mathcal{T} = \vec{p}_{e^-} \cdot (\vec{p}_{\ell^+} \times \vec{p}_{\ell^-})$ [Bartl, Fraas, SH, Hohenwarter-Sodek, Moortgat-Pick, '04]

$$\begin{split} &\tan\beta = 10,\,M_2 = 300~{\rm GeV},\,|M_1| = 150~{\rm GeV},\,|\mu| = 200~{\rm GeV},\,\varphi_\mu = 0\\ &m_{\tilde{e}_L} = 267.6~{\rm GeV},\,m_{\tilde{e}_R} = 224.4~{\rm GeV},\,P_{e^-} = -0.8,\,P_{e^+} = +0.6 \end{split}$$

 $\rightarrow A_T$ larger closer to threshold (spin correlations)

T-odd asymmetry in $ilde{\chi}^{\pm}$ sector

Asymmetry A_T for $e^+e^- \rightarrow \tilde{\chi}_2^- \tilde{\chi}_1^+ \rightarrow \tilde{\chi}_2^- \tilde{\chi}_1^0 c\bar{s}$, $\mathcal{T} = \vec{p}_{e^-} \cdot (\vec{p}_{\bar{s}} \times \vec{p}_c)$ [Bartl, Fraas, SH, Hohenwarter-Sodek, Kernreiter, Moortgat-Pick, '06] \rightarrow tagging of c jet important

 $\tan \beta = 5, M_2 = 150 \text{ GeV}, |M_1| = M_2 5/3 \tan^2 \theta_W, |\mu| = 320 \text{ GeV}, m_{\tilde{\nu}} = 250 \text{ GeV}, m_{\tilde{u}_L} = 500 \text{ GeV}, \sqrt{s} = 500 \text{ GeV}, P_{e^-} = -0.8, P_{e^+} = +0.6, P_{e^-} = +0.8, P_{e^+} = -0.6$

Chargino/neutralino production

$$e^+e^- \longrightarrow \tilde{\chi}_i + \tilde{\chi}_j$$

with transverse beam polarization (4-vector t^{μ}_{\pm} , polarization degree $\mathcal{P}^{T}_{e^{\pm}}$)

• Terms in amplitude squared $|T|^2 = P$ depending on $\mathcal{P}_{e^{\pm}}^T$: $P_T \sim \mathcal{P}_{e^{-}}^T \mathcal{P}_{e^{+}}^T [f_1 \Delta_1 r_1 + f_2 \Delta_2 r_2]$

 f_i : couplings; Δ_i : propagators; r_i : products of t_{\pm} and momenta

 \Rightarrow both beams have to be polarized (in limit $m_e = 0$!) [POWER report, hep-ph/0507011]

• r_1 is real; r_2 is imaginary, consisting of products like $i\epsilon_{\mu\nu\rho\sigma}t^{\mu}_{\pm}p^{\nu}_{i}p^{\rho}_{j}p^{\sigma}_{k}$ \Rightarrow with complex couplings f_2 : real contributions to observables \Rightarrow CP-odd terms $\sim Im(f_2\Delta_2)Im(r_2)$ at tree level

S. Hesselbach UKBSM '07, Liverpool, 30 March, 2007 CPV in SUSY particle and Higgs production and decay 15

Chargino production:

Dirac particles: couplings $f_2\Delta_2$ have to be real (CPT invariance)

- \Rightarrow CP-odd terms $f_2 \Delta_2 r_2$ vanish [Bartl, Hohenwarter-Sodek, Kernreiter, Rud, '04]
- \rightarrow CP-even asymmetries can be defined with help of $f_1 \Delta_1 r_1$
- Neutralino production:

Majorana particles: t and u channels contribute

- \Rightarrow CP-odd terms $f_2 \Delta_2 r_2 \neq 0$ allowed
- \Rightarrow CP-odd observables can be defined

 $f_2 \Delta_2 r_2 \sim \sin(\eta - 2\phi)$

with ϕ : azimuthal angle of scattering plane; η : orientation of transverse polarizations

- CP-odd asymmetry
 - ϕ integration:

$$A_{CP}(\theta) = \frac{1}{\sigma} \left[\int_{\frac{\eta}{2}}^{\frac{\pi}{2} + \frac{\eta}{2}} - \int_{\frac{\pi}{2} + \frac{\eta}{2}}^{\pi + \frac{\eta}{2}} + \int_{\pi + \frac{\eta}{2}}^{\frac{3\pi}{2} + \frac{\eta}{2}} - \int_{\frac{3\pi}{2} + \frac{\eta}{2}}^{2\pi + \frac{\eta}{2}} \right] \frac{d^2\sigma}{d\phi \, d\theta} d\phi$$

• θ integration:

$$A_{CP} = \left[\int_0^{\pi/2} - \int_{\pi/2}^{\pi}\right] A_{CP}(\theta) \,\mathrm{d}\theta$$

 \rightarrow 8 sectors with alternating sign

S. Hesselbach UKBSM '07, Liverpool, 30 March, 2007 CPV in SUSY particle and Higgs production and decay 18

Rate asymmetry in H^{\pm} production

LHC: $pp ightarrow H^{\pm} + W^{\mp} ightarrow au + jj$

[Eriksson, SH, Rathsman, '06]

- Scenarios with large $\tan \beta \Rightarrow$ large $B(H \to \tau \nu)$ $\rightarrow b\bar{b}$ annihilation dominates: $b \to -\frac{H_1, H_2,}{H_3} \to -\frac{W^-}{H^+}$ $b \to -\frac{W^-}{b} \to -\frac{W^-}{H^+}$
- $g_{H_{i}H^{-}W^{+}} = O_{2i} \cos \beta O_{1i} \sin \beta + i O_{3i}, \quad g_{H_{i}\bar{b}b} = O_{1i} + i O_{3i} \sin \beta$

• Rate asymmetry:
$$A_{CP} = \frac{\sigma(b\bar{b} \to H^+W^-) - \sigma(b\bar{b} \to H^-W^+)}{\sigma(b\bar{b} \to H^+W^-) + \sigma(b\bar{b} \to H^-W^+)}$$

In general CP-violating 2-Higgs-Doublet Models:
Large A_{CP} possible in resonant scenarios with $m_{H_2} > m_{H^{\pm}} + m_W$ and $m_{H_3} > m_{H^{\pm}} + m_W$ [Akeroyd, Baek, '01]

Rate asymmetry in H^{\pm} production

- In typical MSSM scenarios:
 - $m_{H_2} \sim m_{H_3} \sim m_{H^{\pm}} \Rightarrow \left(A_{CP} \lesssim 1\% \right)$
 - small mixing between CP-even and CP-odd Higgs bosons
 - \Rightarrow weak φ_{A_t} and φ_{μ} dependence of cross section
- Resonant scenarios with $m_{H_3} > m_{H^{\pm}} + m_W$

- [Akeroyd, Beak, '02]
- Possible in scenarios with $|\mu| > 4M_{SUSY}$ or $|A_t|, |A_b| > 4M_{SUSY}$

σ (fb)

10

10 ²

2-loop

0

-π/4 -π/2 -3π/-

Stronger phase dependence of cross section possible _{mu_1}=175 GeV, tanβ=11

$$\begin{split} m_{H^{\pm}} &= 175 \text{ GeV, } \tan\beta = 11 \\ |\mu| &= 3300 \text{ GeV, } M_2 = M_3 = 500 \text{ GeV} \\ M_L^3 &= M_E^3 = 500 \text{ GeV} \\ M_Q^3 &= M_U^3 = 250 \text{ GeV, } M_D^3 = 400 \text{ GeV} \\ A_t &= A_b = 0 \end{split}$$

However: A_{CP} remains small

Summary and outlook

- Aim: revealing the CP structure of the underlying model
- CP-even observables: BR and σ of squarks and Higgs bosons \rightarrow strong dependence on SUSY phases possible
- CP-odd observables
 - Triple products, transverse beam polarization: asymmetries $\mathcal{O}(10\%)$
 - Rate asymmetry in $H^{\pm}W^{\mp}$ production: small in MSSM
- Outlook: Projects within NExT Institute (Southampton University ↔ PPD, RAL) http://www.hep.phys.soton.ac.uk/next/NEXT_web/NEXT_web.htm
 - Analysis of CPV in MSSM for LHC Higgs search
 - \rightarrow Implications of light Higgs ($m_{H_1} \sim 50 \text{ GeV}$) \leftrightarrow NMSSM
 - Analysis of explicit CP violation in NMSSM