Motivations	The DBI tachyon	The CSFT tachyon	Cosmology	Nonlocal solutions	Conclusions

Cosmology of the string tachyon

Progress in cubic string field theory

Gianluca Calcagni

March 28th, 2007

(ロ) (同) (三) (三) (三) (○) (○)

Motivations	The DBI tachyon	The CSFT tachyon	Cosmology	Nonlocal solutions	Conclusions
Outline					

Cosmology 4

Cosmology

Nonlocal solution

ヘロア 人間 アメヨアメヨア

Conclusions

€ 990

The many faces of the string tachyon

Conformal field theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The many faces of the string tachyon

• Conformal field theory [Sen 2002]

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The many faces of the string tachyon

- Conformal field theory [Sen 2002]
- Dirac-Born-Infeld (DBI) effective action

- Conformal field theory [Sen 2002]
- Dirac–Born–Infeld (DBI) effective action [Garousi 2000; Bergshoeff et al. 2000; Klusoň 2000; Gibbons, Hori, and Yi 2001]

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Conformal field theory [Sen 2002]
- Dirac–Born–Infeld (DBI) effective action [Garousi 2000; Bergshoeff et al. 2000; Klusoň 2000; Gibbons, Hori, and Yi 2001]

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• Boundary string field theory (BSFT)

- Conformal field theory [Sen 2002]
- Dirac–Born–Infeld (DBI) effective action [Garousi 2000; Bergshoeff et al. 2000; Klusoň 2000; Gibbons, Hori, and Yi 2001]
- Boundary string field theory (BSFT) [Witten 1992,1993; Shatashvili 1993a,b]

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Conformal field theory [Sen 2002]
- Dirac–Born–Infeld (DBI) effective action [Garousi 2000; Bergshoeff et al. 2000; Klusoň 2000; Gibbons, Hori, and Yi 2001]
- Boundary string field theory (BSFT) [Witten 1992,1993; Shatashvili 1993a,b]

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• Cubic string field theory (CSFT)

- Conformal field theory [Sen 2002]
- Dirac–Born–Infeld (DBI) effective action [Garousi 2000; Bergshoeff et al. 2000; Klusoň 2000; Gibbons, Hori, and Yi 2001]
- Boundary string field theory (BSFT) [Witten 1992,1993; Shatashvili 1993a,b]
- Cubic string field theory (CSFT) [Witten 1986a,b; Preitschopf et al. 1990; Aref'eva et al. 2002; Aref'eva et al. 1990a,b; Berkovits 1996,1999]

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Conformal field theory [Sen 2002]
- Dirac–Born–Infeld (DBI) effective action [Garousi 2000; Bergshoeff et al. 2000; Klusoň 2000; Gibbons, Hori, and Yi 2001]
- Boundary string field theory (BSFT) [Witten 1992,1993; Shatashvili 1993a,b]
- Cubic string field theory (CSFT) [Witten 1986a,b; Preitschopf et al. 1990; Aref'eva et al. 2002; Aref'eva et al. 1990a,b; Berkovits 1996,1999]

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

For a review see Sen (hep-th/0410103).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Tachyon condensation (in Minkowski)

All methods agree: as the tachyon rolls down towards the asymptotic minimum of the potential, the brane it lives on decays into a lower-dimensional brane or the closed string vacuum

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Tachyon condensation (in Minkowski)

All methods agree: as the tachyon rolls down towards the asymptotic minimum of the potential, the brane it lives on decays into a lower-dimensional brane or the closed string vacuum (Sen's conjecture...

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Tachyon condensation (in Minkowski)

All methods agree: as the tachyon rolls down towards the asymptotic minimum of the potential, the brane it lives on decays into a lower-dimensional brane or the closed string vacuum (Sen's conjecture... proven by Schnabl 2005)

Motivations

Cosmology

Nonlocal soluti

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Conclusions

Two actions for one tachyon (in Minkowski)

Two actions for one tachyon (in Minkowski)

DBI tachyon (negligible higher-than-first-order derivatives):

$$\bar{\mathcal{S}}_T = -\int d^D x V(T) \sqrt{1 + \partial_\mu T \partial^\mu T}$$

(日) (日) (日) (日) (日) (日) (日)

Two actions for one tachyon (in Minkowski)

DBI tachyon (negligible higher-than-first-order derivatives):

$$\bar{\mathcal{S}}_T = -\int d^D x V(T) \sqrt{1 + \partial_\mu T \partial^\mu T}$$

Cubic string field theory:

$$\mathcal{S} = -rac{1}{g_o^2}\int\left(rac{1}{2lpha'}\Phi*Q_B\Phi+rac{1}{3}\Phi*\Phi*\Phi
ight)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Two actions for one tachyon (in Minkowski)

DBI tachyon (negligible higher-than-first-order derivatives):

$$\bar{\mathcal{S}}_T = -\int d^D x V(T) \sqrt{1 + \partial_\mu T \partial^\mu T}$$

Cubic string field theory:

$$\mathcal{S} = -rac{1}{g_o^2}\int\left(rac{1}{2lpha'}\Phi*Q_B\Phi+rac{1}{3}\Phi*\Phi*\Phi
ight)$$

At level (0,0): $\Phi \cong |\Phi\rangle = \phi(x)|\downarrow\rangle$ and (metric $-+++\dots$)

Two actions for one tachyon (in Minkowski)

DBI tachyon (negligible higher-than-first-order derivatives):

$$\bar{\mathcal{S}}_T = -\int d^D x V(T) \sqrt{1 + \partial_\mu T \partial^\mu T}$$

Cubic string field theory:

$$\mathcal{S} = -rac{1}{g_o^2}\int\left(rac{1}{2lpha'}\Phi*Q_B\Phi+rac{1}{3}\Phi*\Phi*\Phi
ight)$$

At level (0,0): $\Phi \cong |\Phi\rangle = \phi(x)|\!\downarrow\rangle$ and (metric $-+++\dots$)

$$\bar{\mathcal{S}}_{\phi} = \frac{1}{g_o^2} \int d^D x \left[\frac{1}{2\alpha'} \phi(\alpha' \partial_{\mu} \partial^{\mu} + 1) \phi - \frac{\lambda}{3} \left(\lambda^{\alpha' \partial_{\mu} \partial^{\mu}/3} \phi \right)^3 - \Lambda \right]$$

where $\lambda = 3^{9/2}/2^6 \approx 2.19$.

Two actions for one tachyon (in Minkowski)

DBI tachyon (negligible higher-than-first-order derivatives):

$$\bar{\mathcal{S}}_T = -\int d^D x V(T) \sqrt{1 + \partial_\mu T \partial^\mu T}$$

Cubic string field theory:

$$\mathcal{S} = -rac{1}{g_o^2}\int\left(rac{1}{2lpha'}\Phi*Q_B\Phi+rac{1}{3}\Phi*\Phi*\Phi
ight)$$

At level (0,0): $\Phi \cong |\Phi\rangle = \phi(x)|\downarrow\rangle$ and (metric $-+++\dots$)

$$\bar{\mathcal{S}}_{\phi} = \frac{1}{g_o^2} \int d^D x \left[\frac{1}{2\alpha'} \phi(\alpha' \partial_{\mu} \partial^{\mu} + 1) \phi - \frac{\lambda}{3} \left(\lambda^{\alpha' \partial_{\mu} \partial^{\mu}/3} \phi \right)^3 - \Lambda \right]$$

where $\lambda=3^{9/2}/2^6\approx 2.19.~$ See Ohmori (hep-th/0102085).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Cosmology

Nonlocal solution

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Conclusions

Do they give the same predictions?

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Do they give the same predictions?

 DBI tachyon: extensively studied both as inflaton and dark energy field

Do they give the same predictions?

 DBI tachyon: extensively studied both as inflaton and dark energy field (problematic or ineffective in both cases)

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Do they give the same predictions?

- DBI tachyon: extensively studied both as inflaton and dark energy field (problematic or ineffective in both cases)
- SFT tachyon: poor control both on Minkowski and FRW backgrounds... ?

Do they give the same predictions?

- DBI tachyon: extensively studied both as inflaton and dark energy field (problematic or ineffective in both cases)
- SFT tachyon: poor control both on Minkowski and FRW backgrounds... ?
- ⇒ A comparison would open up interesting possibilities!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Friedmann–Robertson–Walker background

Flat FRW metric:

$$ds^2 = -dt^2 + a^2(t) \, dx_i dx^i.$$

The Hubble parameter is defined as $H \equiv \dot{a}/a = d_t a/a$.

Motivations	The DBI tachyon	The CSFT tachyon	Cosmology	Nonlocal solutions	Conclusions
Dynan	nics				
וחח	+:				

$$S_T = -\int d^D x \sqrt{-g} V(T) \sqrt{1 + \partial_\mu T \partial^\mu T}$$

$$S_T = -\int d^D x \sqrt{-g} V(T) \sqrt{1 + \partial_\mu T \partial^\mu T}$$

Perfect fluid (FRW):

$$p_T = -V(T)\sqrt{1-\dot{T}^2}$$

$$\rho_T = V(T)/\sqrt{1-\dot{T}^2}$$

ヘロト 人間 とくほ とくほとう

€ 990

$$S_T = -\int d^D x \sqrt{-g} V(T) \sqrt{1 + \partial_\mu T \partial^\mu T}$$

Perfect fluid (FRW):

$$p_T = -V(T)\sqrt{1-\dot{T}^2}$$

$$\rho_T = V(T)/\sqrt{1-\dot{T}^2}$$

$$w \equiv p_T/\rho_T = \dot{T}^2 - 1$$

ヘロト 人間 とくほ とくほとう

€ 990

$$S_T = -\int d^D x \sqrt{-g} V(T) \sqrt{1 + \partial_\mu T \partial^\mu T}$$

Perfect fluid (FRW):

$$p_T = -V(T)\sqrt{1-\dot{T}^2}$$

$$\rho_T = V(T)/\sqrt{1-\dot{T}^2}$$

$$w \equiv p_T/\rho_T = \dot{T}^2 - 1 < 0$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

$$S_T = -\int d^D x \sqrt{-g} V(T) \sqrt{1 + \partial_\mu T \partial^\mu T}$$

Perfect fluid (FRW):

$$p_T = -V(T)\sqrt{1-\dot{T}^2}$$

$$\rho_T = V(T)/\sqrt{1-\dot{T}^2}$$

$$w \equiv p_T/\rho_T = \dot{T}^2 - 1 < 0$$

Equations of motion (EH action):

$$H^{2} = \rho_{T} + \rho_{m} + \rho_{r}$$
$$\frac{\ddot{T}}{1 - \dot{T}^{2}} + 3H\dot{T} + \frac{V_{,T}}{V} = 0$$

Condensation into the closed string vacuum (Carrollian limit).

- Condensation into the closed string vacuum (Carrollian limit).
- Near the minimum $g_s = O(1)$ and the perturbative description may fail down (for simple compactification).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Condensation into the closed string vacuum (Carrollian limit).
- Near the minimum $g_s = O(1)$ and the perturbative description may fail down (for simple compactification).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• This is a toy model valid on cosmological scales.

- Condensation into the closed string vacuum (Carrollian
 - limit). • Near the minimum $g_s = O(1)$ and the perturbative
 - description may fail down (for simple compactification).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- This is a toy model valid on cosmological scales.
- More problematic to justify at late times.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

æ

DBI tachyon inflation

• No reheating with runaway string effective potentials.

• No reheating with runaway string effective potentials.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Large density perturbations with such potentials.

DBI tachyon inflation

- No reheating with runaway string effective potentials.
- Large density perturbations with such potentials.
- Reheating can be achieved with a negative KKLT-like Λ . Anisotropies adjusted with small warp factor [Garousi, Sami, Tsujikawa 2004]

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

DBI tachyon inflation

- No reheating with runaway string effective potentials.
- Large density perturbations with such potentials.
- Reheating can be achieved with a negative KKLT-like Λ . Anisotropies adjusted with small warp factor [Garousi, Sami, Tsujikawa 2004]

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• With phenomenological potentials, good inflation and non-Gaussianity but non-characteristic predictions.

Motivations

Cosmology

Nonlocal

・ロン ・聞 と ・ ヨ と ・ ヨ と

DBI tachyon as dark energy with Andrew R. Liddle – PRD 74, 043528 (2006), astro-ph/0606003

• Different predictions between the DBI tachyon and canonical quintessence?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Different predictions between the DBI tachyon and canonical quintessence?
- For a wide choice of potentials (ad-hoc or motivated), fine tuning on either the i.c. or the parameters of the potential.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Different predictions between the DBI tachyon and canonical quintessence?
- For a wide choice of potentials (ad-hoc or motivated), fine tuning on either the i.c. or the parameters of the potential.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• High-precision observational cosmology allows to constrain the theory in a remarkable way.

- Different predictions between the DBI tachyon and canonical quintessence?
- For a wide choice of potentials (ad-hoc or motivated), fine tuning on either the i.c. or the parameters of the potential.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- High-precision observational cosmology allows to constrain the theory in a remarkable way.
- The tachyon is poorly effective as dark energy (the cosmological constant problem is NOT solved).

- Different predictions between the DBI tachyon and canonical quintessence?
- For a wide choice of potentials (ad-hoc or motivated), fine tuning on either the i.c. or the parameters of the potential.
- High-precision observational cosmology allows to constrain the theory in a remarkable way.
- The tachyon is poorly effective as dark energy (the cosmological constant problem is NOT solved).
- The tachyon cannot decay faster than dust matter, $\rho_T \sim a^{-3(1+w_T)} > \rho_m \sim a^{-3} \Rightarrow$ cannot be used as quintessential inflaton.

$$\mathcal{S} = \mathcal{S}_g + \mathcal{S}_\phi,$$

$$S = S_g + S_\phi, \qquad S_g = \frac{1}{2\kappa_D^2} \int d^D x \sqrt{-g} R$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

∃ 990

$$S = S_g + S_{\phi}, \qquad S_g = \frac{1}{2\kappa_D^2} \int d^D x \sqrt{-g} R$$
$$S_{\phi} = \int d^D x \sqrt{-g} \left[\frac{1}{2} \phi (\Box - m^2) \phi - U(\tilde{\phi}) - \Lambda \right]$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

æ

$$S = S_g + S_{\phi}, \qquad S_g = \frac{1}{2\kappa_D^2} \int d^D x \sqrt{-g} R$$
$$S_{\phi} = \int d^D x \sqrt{-g} \left[\frac{1}{2} \phi (\Box - m^2) \phi - U(\tilde{\phi}) - \Lambda \right]$$
$$\Box \equiv \frac{1}{\sqrt{-g}} \partial^{\mu} (\sqrt{-g} \partial_{\mu})$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

æ

$$S = S_g + S_{\phi}, \qquad S_g = \frac{1}{2\kappa_D^2} \int d^D x \sqrt{-g} R$$
$$S_{\phi} = \int d^D x \sqrt{-g} \left[\frac{1}{2} \phi (\Box - m^2) \phi - U(\tilde{\phi}) - \Lambda \right]$$
$$\Box \equiv \frac{1}{\sqrt{-g}} \partial^\mu (\sqrt{-g} \partial_\mu)$$
$$\tilde{\phi} \equiv \lambda^{\Box/3} \phi \equiv e^{r_* \Box} \phi, \qquad r_* \equiv \frac{\ln \lambda}{3} \approx 0.2616$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ Q @

$$S = S_g + S_{\phi}, \qquad S_g = \frac{1}{2\kappa_D^2} \int d^D x \sqrt{-g} R$$
$$S_{\phi} = \int d^D x \sqrt{-g} \left[\frac{1}{2} \phi (\Box - m^2) \phi - U(\tilde{\phi}) - \Lambda \right]$$
$$\Box \equiv \frac{1}{\sqrt{-g}} \partial^{\mu} (\sqrt{-g} \partial_{\mu})$$
$$\tilde{\phi} \equiv \lambda^{\Box/3} \phi \equiv e^{r_* \Box} \phi, \qquad r_* \equiv \frac{\ln \lambda}{3} \approx 0.2616$$
$$e^{r_* \Box} = \sum_{\ell=0}^{+\infty} \frac{r_*^{\ell}}{\ell!} \Box^{\ell} \equiv \sum_{\ell=0}^{+\infty} c_{\ell} \Box^{\ell}$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Some other definitions

$$ilde{V}(ilde{\phi}) ~\equiv~ rac{1}{2}m^2\phi^2 + U(ilde{\phi}) + \Lambda$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Some other definitions

$$\begin{split} \tilde{V}(\tilde{\phi}) &\equiv \quad \frac{1}{2}m^2\phi^2 + U(\tilde{\phi}) + \Lambda \\ U' &\equiv \quad \frac{\delta U}{\delta\phi} = e^{r_*\Box}\tilde{U}' \end{split}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Some other definitions

$$\begin{split} \tilde{V}(\tilde{\phi}) &\equiv \quad \frac{1}{2}m^2\phi^2 + U(\tilde{\phi}) + \Lambda \\ U' &\equiv \quad \frac{\delta U}{\delta\phi} = e^{r_*\Box}\tilde{U}' \\ \tilde{U}' &\equiv \quad \frac{\partial U}{\partial\tilde{\phi}} \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・のへぐ

Pure monomial potential:

Pure monomial potential:

$$U(\tilde{\phi}) = \frac{\sigma}{n} \tilde{\phi}^n$$
$$U' = \sigma e^{r_* \Box} \tilde{\phi}^{n-1}$$

ヘロト 人間 とくほとくほとう

E 990

Pure monomial potential:

$$U(ilde{\phi}) = rac{\sigma}{n} ilde{\phi}^n
onumber \ U' = \sigma e^{r_* \Box} ilde{\phi}^{n-1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Bosonic CSFT when $m^2 = -1$, $\sigma = \lambda$, n = 3.

Pure monomial potential:

$$U(\tilde{\phi}) = \frac{\sigma}{n} \tilde{\phi}^{n}$$
$$U' = \sigma e^{r_* \Box} \tilde{\phi}^{n-1}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Bosonic CSFT when $m^2 = -1$, $\sigma = \lambda$, n = 3.

Susy CSFT when $m^2 = -1/2$, $\sigma = \sigma(\lambda)$, n = 4.

Cosmology

Nonlocal so

Conclusions

Equations of motion: scalar field

$$-(\Box - m^2)\phi + U' = 0$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Cosmology

Nonlocal so

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Conclusions

Equations of motion: scalar field

$$-(\Box - m^2)\phi + U' = 0$$

In terms of $\tilde{\phi}$:

$$-(\Box - m^2)e^{-2r_*\Box}\tilde{\phi} + \tilde{U}' = 0$$

Energy density and pressure

$$\rho = -T_0^0 = \frac{\dot{\phi}^2}{2}(1 - \mathcal{O}_2) + \tilde{V} - \mathcal{O}_1$$
$$p = T_i^i = \frac{\dot{\phi}^2}{2}(1 - \mathcal{O}_2) - \tilde{V} + \mathcal{O}_1$$

・ロン ・雪 と ・ ヨ と

Energy density and pressure

$$\rho = -T_0^0 = \frac{\dot{\phi}^2}{2}(1 - \mathcal{O}_2) + \tilde{V} - \mathcal{O}_1$$

$$p = T_i^i = \frac{\dot{\phi}^2}{2}(1 - \mathcal{O}_2) - \tilde{V} + \mathcal{O}_1$$

$$\mathcal{O}_1 = \int_0^{r_*} ds \, (e^{s\Box} \tilde{U}') (\Box e^{-s\Box} \tilde{\phi}),$$

・ロン ・雪 と ・ ヨ と

Energy density and pressure

$$\rho = -T_0^0 = \frac{\dot{\phi}^2}{2}(1 - \mathcal{O}_2) + \tilde{V} - \mathcal{O}_1$$

$$p = T_i^i = \frac{\dot{\phi}^2}{2}(1 - \mathcal{O}_2) - \tilde{V} + \mathcal{O}_1$$

$$\mathcal{O}_1 = \int_0^{r_*} ds \, (e^{s\Box} \tilde{U}') (\Box e^{-s\Box} \tilde{\phi}),$$

$$\mathcal{O}_2 = \frac{2}{\dot{\phi}^2} \int_0^{r_*} ds \, (e^{s\Box} \tilde{U}') \cdot (e^{-s\Box} \tilde{\phi}) \cdot.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

Equation of state

Motivations	The DBI tachyon	The CSFT tachyon	Cosmology	Nonlocal solutions	Conclusions
Equati	on of state				

• Pseudo slow-roll condition:

 $\dot{\phi}^2 \ll \tilde{V}$ and $\dot{\phi}^2 |\mathcal{O}_2| \ll |\mathcal{O}_1|$

• Pseudo slow-roll condition:

$$\dot{\phi}^2 \ll \tilde{V}$$
 and $\dot{\phi}^2 |\mathcal{O}_2| \ll |\mathcal{O}_1| \Rightarrow w_{\phi} \sim -1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ
$$\dot{\phi}^2 \ll \tilde{V}$$
 and $\dot{\phi}^2 |\mathcal{O}_2| \ll |\mathcal{O}_1| \Rightarrow w_\phi \sim -1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

• A new condition for acceleration:

$$|\dot{\phi}^2(1-\mathcal{O}_2)/2+ ilde{V}|\ll|\mathcal{O}_1|$$

$$\dot{\phi}^2 \ll \tilde{V}$$
 and $\dot{\phi}^2 |\mathcal{O}_2| \ll |\mathcal{O}_1| \Rightarrow w_\phi \sim -1$

• A new condition for acceleration:

$$|\dot{\phi}^2(1-\mathcal{O}_2)/2+\tilde{V}|\ll |\mathcal{O}_1|\Rightarrow w_{\phi}\sim -1$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

$$\dot{\phi}^2 \ll \tilde{V}$$
 and $\dot{\phi}^2 |\mathcal{O}_2| \ll |\mathcal{O}_1| \Rightarrow w_{\phi} \sim -1$

• A new condition for acceleration:

$$|\dot{\phi}^2(1-\mathcal{O}_2)/2+\tilde{V}|\ll |\mathcal{O}_1|\Rightarrow w_{\phi}\sim -1$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• Pseudo kinetic regime (beyond the DBI barrier):

 $\dot{\phi}^2 \gg \tilde{V}$ and $\dot{\phi}^2 |\mathcal{O}_2| \gg |\mathcal{O}_1|$

$$\dot{\phi}^2 \ll \tilde{V}$$
 and $\dot{\phi}^2 |\mathcal{O}_2| \ll |\mathcal{O}_1| \Rightarrow w_{\phi} \sim -1$

• A new condition for acceleration:

$$|\dot{\phi}^2(1-\mathcal{O}_2)/2+\tilde{V}|\ll |\mathcal{O}_1|\Rightarrow w_\phi\sim -1$$

• Pseudo kinetic regime (beyond the DBI barrier):

$$\dot{\phi}^2 \gg \tilde{V}$$
 and $\dot{\phi}^2 |\mathcal{O}_2| \gg |\mathcal{O}_1| \Rightarrow w_{\phi} \sim 1$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

$$\dot{\phi}^2 \ll \tilde{V}$$
 and $\dot{\phi}^2 |\mathcal{O}_2| \ll |\mathcal{O}_1| \Rightarrow w_{\phi} \sim -1$

• A new condition for acceleration:

$$|\dot{\phi}^2(1-\mathcal{O}_2)/2+\tilde{V}|\ll |\mathcal{O}_1|\Rightarrow w_\phi\sim -1$$

• Pseudo kinetic regime (beyond the DBI barrier):

$$\dot{\phi}^2 \gg \tilde{V}$$
 and $\dot{\phi}^2 |\mathcal{O}_2| \gg |\mathcal{O}_1| \Rightarrow w_{\phi} \sim 1$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Pseudo phantom regime:

$$\dot{\phi}^2 \gg | ilde{V} - \mathcal{O}_1|$$
 and $\mathcal{O}_2 > 1$

$$\dot{\phi}^2 \ll \tilde{V}$$
 and $\dot{\phi}^2 |\mathcal{O}_2| \ll |\mathcal{O}_1| \Rightarrow w_{\phi} \sim -1$

• A new condition for acceleration:

$$|\dot{\phi}^2(1-\mathcal{O}_2)/2+\tilde{V}|\ll|\mathcal{O}_1|\Rightarrow w_{\phi}\sim-1$$

• Pseudo kinetic regime (beyond the DBI barrier):

$$\dot{\phi}^2 \gg \tilde{V}$$
 and $\dot{\phi}^2 |\mathcal{O}_2| \gg |\mathcal{O}_1| \Rightarrow w_{\phi} \sim 1$

• Pseudo phantom regime:

$$\dot{\phi}^2 \gg |\tilde{V} - \mathcal{O}_1|$$
 and $\mathcal{O}_2 > 1 \Rightarrow w_{\phi} \lesssim -1$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• The cosmological equations of motion are nonlinear and involve all the derivatives $\phi^{(n)}$ and $H^{(n)}$, that is, all the infinite SR tower.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- The cosmological equations of motion are nonlinear and involve all the derivatives $\phi^{(n)}$ and $H^{(n)}$, that is, all the infinite SR tower.
- Non-standard Cauchy problem: infinite initial conditions, to know them means to find the solution! [Moeller and Zwiebach 2002]

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- The cosmological equations of motion are nonlinear and involve all the derivatives $\phi^{(n)}$ and $H^{(n)}$, that is, all the infinite SR tower.
- Non-standard Cauchy problem: infinite initial conditions, to know them means to find the solution! [Moeller and Zwiebach 2002]
- Nonlocal theories are at odds with the inflationary paradigm: while the latter tends to erase any memory of the initial conditions, the formers do preserve this memory.

(ロ) (同) (三) (三) (三) (○) (○)

Unviable cosmologies?

 $\phi = t^p, \qquad H = H_0 t^q$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\phi = t^p, \qquad H = H_0 t^q$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Constant SR parameters when q = -1.

$$\phi = t^p, \qquad H = H_0 t^q$$

Constant SR parameters when q = -1.

$$\Box^{\ell}\phi = (-1)^{\ell} t^{p-2\ell} \prod_{n=0}^{\ell-1} (p-2n)(p-2n-1+3H_0).$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

$$\phi = t^p, \qquad H = H_0 t^q$$

Constant SR parameters when q = -1.

$$\Box^{\ell}\phi = (-1)^{\ell}t^{p-2\ell}\prod_{n=0}^{\ell-1}(p-2n)(p-2n-1+3H_0).$$

If $p \in \mathbb{R} \setminus \mathbb{N}^+$, $\tilde{\phi}$ is ill-defined

$$\phi = t^p, \qquad H = H_0 t^q$$

Constant SR parameters when q = -1.

$$\Box^{\ell}\phi = (-1)^{\ell} t^{p-2\ell} \prod_{n=0}^{\ell-1} (p-2n)(p-2n-1+3H_0).$$

If $p \in \mathbb{R} \setminus \mathbb{N}^+$, $\tilde{\phi}$ is ill-defined

$$\lim_{\ell \to \infty} \left| \frac{c_{\ell+1} \Box^{\ell+1} \phi}{c_{\ell} \Box^{\ell} \phi} \right| = \lim_{\ell \to \infty} |c_1(p-2\ell)(p-2\ell-1+3H_0)| \frac{t^{-2}}{\ell+1} = +\infty,$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣�?

$$\phi = t^p, \qquad H = H_0 t^q$$

Constant SR parameters when q = -1.

$$\Box^{\ell}\phi = (-1)^{\ell} t^{p-2\ell} \prod_{n=0}^{\ell-1} (p-2n)(p-2n-1+3H_0).$$

If $p \in \mathbb{R} \setminus \mathbb{N}^+, \, \tilde{\phi}$ is ill-defined

$$\lim_{\ell \to \infty} \left| \frac{c_{\ell+1} \Box^{\ell+1} \phi}{c_{\ell} \Box^{\ell} \phi} \right| = \lim_{\ell \to \infty} |c_1(p-2\ell)(p-2\ell-1+3H_0)| \frac{t^{-2}}{\ell+1} = +\infty,$$

Possibility: p is a positive even number, so that the series ends at $\ell_* \equiv p/2$ and $\tilde{\phi} \sim t^p$.

$$\phi = t^p, \qquad H = H_0 t^q$$

Constant SR parameters when q = -1.

$$\Box^{\ell}\phi = (-1)^{\ell} t^{p-2\ell} \prod_{n=0}^{\ell-1} (p-2n)(p-2n-1+3H_0).$$

If $p \in \mathbb{R} \setminus \mathbb{N}^+, \, \tilde{\phi}$ is ill-defined

$$\lim_{\ell \to \infty} \left| \frac{c_{\ell+1} \Box^{\ell+1} \phi}{c_\ell \Box^\ell \phi} \right| = \lim_{\ell \to \infty} |c_1(p-2\ell)(p-2\ell-1+3H_0)| \frac{t^{-2}}{\ell+1} = +\infty,$$

Possibility: p is a positive even number, so that the series ends at $\ell_* \equiv p/2$ and $\tilde{\phi} \sim t^p$. Another case is $p - 1 + 3H_0 = 2n$. Unviable cosmologies?

Can we conclude that power-law cosmology cannot be used as a base for nonlocal solutions?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Unviable cosmologies?

Can we conclude that power-law cosmology cannot be used as a base for nonlocal solutions?

NO!

What is not defined is the nonlocal solution expressed as an infinite series of powers of the d'Alembertian.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Cosmology

・ロン ・ 四 と ・ 回 と ・ 回 と

æ

Localization GC, G. Nardelli, and M. Montobbio, to appear; GC et al., to appear

 Interpret r_{*} as a fixed value of an auxiliary evolution variable r.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 Interpret r_{*} as a fixed value of an auxiliary evolution variable r. The scalar field φ(r, t) is thought to live in 1 + 1 dimensions.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

 Interpret *r*_{*} as a fixed value of an auxiliary evolution variable *r*. The scalar field φ(*r*, *t*) is thought to live in 1 + 1 dimensions.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• The solution $\phi_{loc}(t) = \phi(r_* = 0, t)$ of the local system $(r_* = 0)$ is the "initial condition".

- Interpret r_{*} as a fixed value of an auxiliary evolution variable r. The scalar field φ(r, t) is thought to live in 1 + 1 dimensions.
- The solution $\phi_{loc}(t) = \phi(r_* = 0, t)$ of the local system $(r_* = 0)$ is the "initial condition".
- Define

$$\phi(r,t) \equiv e^{r(\beta + \Box/\alpha)}\phi_{\rm loc}(t)$$

(日) (日) (日) (日) (日) (日) (日)

 $\alpha \, \partial_r \phi(r,t) = \alpha \beta \, \phi(r,t) + \Box \phi(r,t)$

 $\alpha \, \partial_r \phi(r,t) = \alpha \beta \, \phi(r,t) + \Box \phi(r,t)$

• Property 2: $e^{q\Box}$ is simply a shift of the auxiliary variable *r*.

$$e^{q \sqcup} \phi(r,t) = e^{\alpha q \, \partial_r} \phi(r,t) = \phi(r + \alpha q, t)$$

 $\alpha \, \partial_r \phi(r,t) = \alpha \beta \, \phi(r,t) + \Box \phi(r,t)$

• Property 2: $e^{q\Box}$ is simply a shift of the auxiliary variable *r*. $e^{q\Box}\phi(r,t) = e^{\alpha q \partial_r}\phi(r,t) = \phi(r + \alpha q, t)$

• \Rightarrow The system becomes local in t!

 $\alpha \, \partial_r \phi(r,t) = \alpha \beta \, \phi(r,t) + \Box \phi(r,t)$

• Property 2: $e^{q\Box}$ is simply a shift of the auxiliary variable *r*. $e^{q\Box}\phi(r,t) = e^{\alpha q \partial_r}\phi(r,t) = \phi(r + \alpha q, t)$

• \Rightarrow The system becomes local in t!

$$(\Box - m^2)\phi(r, t) = e^{-r\beta}\tilde{U}'[e^{r\beta}\phi((1+2\alpha)r, t)]$$

Cosmology

Nonlocal solutions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Conclusions

Steps towards localized solutions

Find the eigenstates of the d'Alembertian operator:

Find the eigenstates of the d'Alembertian operator:

$$\Box G(\mu, t) = -\ddot{G}(\mu, t) - 3H\dot{G}(\mu, t) = \mu^2 G(\mu, t) \,.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

• Find the eigenstates of the d'Alembertian operator: $\Box G(\mu, t) = -\ddot{G}(\mu, t) - 3H\dot{G}(\mu, t) = \mu^2 G(\mu, t).$

Write the local solution as an expansion in the basis of eigenstates of the □ (Mellin–Barnes transform):

(日) (日) (日) (日) (日) (日) (日)

• Find the eigenstates of the d'Alembertian operator: $\Box G(\mu, t) = -\ddot{G}(\mu, t) - 3H\dot{G}(\mu, t) = \mu^2 G(\mu, t).$

Write the local solution as an expansion in the basis of eigenstates of the □ (Mellin–Barnes transform):

$$\phi(0,t) = \int d\mu \left[C_1 G_1(\mu,t) + C_2 G_2(\mu,t) \right] f(\mu) \,.$$

(日) (日) (日) (日) (日) (日) (日)

• Find the eigenstates of the d'Alembertian operator: $\Box G(\mu, t) = -\ddot{G}(\mu, t) - 3H\dot{G}(\mu, t) = \mu^2 G(\mu, t).$

Write the local solution as an expansion in the basis of eigenstates of the □ (Mellin–Barnes transform):

$$\phi(0,t) = \int d\mu \left[C_1 G_1(\mu,t) + C_2 G_2(\mu,t) \right] f(\mu) \,.$$

Write the nonlocal "solution" (Gabor transform):

• Find the eigenstates of the d'Alembertian operator: $\Box G(\mu, t) = -\ddot{G}(\mu, t) - 3H\dot{G}(\mu, t) = \mu^2 G(\mu, t).$

Write the local solution as an expansion in the basis of eigenstates of the □ (Mellin–Barnes transform):

$$\phi(0,t) = \int d\mu \left[C_1 G_1(\mu,t) + C_2 G_2(\mu,t) \right] f(\mu) \,.$$

Write the nonlocal "solution" (Gabor transform):

$$\phi(r,t) = \int d\mu \, e^{r(eta+\mu^2/lpha)} [C_1 G_1(\mu,t) + C_2 \, G_2(\mu,t)] f(\mu) \, .$$

・<
・<
・<
・<
・<
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Find the eigenstates of the d'Alembertian operator: $\Box G(\mu, t) = -\ddot{G}(\mu, t) - 3H\dot{G}(\mu, t) = \mu^2 G(\mu, t).$

Write the local solution as an expansion in the basis of eigenstates of the □ (Mellin–Barnes transform):

$$\phi(0,t) = \int d\mu \left[C_1 G_1(\mu,t) + C_2 G_2(\mu,t) \right] f(\mu) \,.$$

Write the nonlocal "solution" (Gabor transform):

$$\phi(r,t) = \int d\mu \, e^{r(eta+\mu^2/lpha)} [C_1 G_1(\mu,t) + C_2 \, G_2(\mu,t)] f(\mu) \, .$$

It satisfies the heat equation by definition!
Steps towards localized solutions

Find the eigenstates of the d'Alembertian operator: $\Box G(\mu, t) = -\ddot{G}(\mu, t) - 3H\dot{G}(\mu, t) = \mu^2 G(\mu, t).$

Write the local solution as an expansion in the basis of eigenstates of the □ (Mellin–Barnes transform):

$$\phi(0,t) = \int d\mu \left[C_1 G_1(\mu,t) + C_2 G_2(\mu,t) \right] f(\mu) \,.$$

Write the nonlocal "solution" (Gabor transform):

$$\phi(r,t) = \int d\mu \, e^{r(eta+\mu^2/lpha)} [C_1 G_1(\mu,t) + C_2 \, G_2(\mu,t)] f(\mu) \, .$$

It satisfies the heat equation by definition!

Check that $\phi(r, t)$ is an approximated solution of the nonlocal e.o.m.s for some α , β , C_i .

SUSY Minkowski solution successfully found (to appear)
 Only known method allowing to keep the whole series e[□]

- SUSY Minkowski solution successfully found (to appear)
- 2 Only known method allowing to keep the whole series e^{\Box}
- Quantization is well-defined, as in the closely related 1 + 1 Hamiltonian formalism [Llosa and Vives 1994; Gomis et al. 2001,2004; Cheng et al. 2002]

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Motivations The DBI tachyon The CSFT tachyon

Cosmology

Nonlocal solutions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Conclusions

"Unviable" cosmologies revisited $a = t^p$, $H = H_0 t^{-1}$

The DBI tachyon The CSFT tachyon

Nonlocal solutions

"Unviable" cosmologies revisited $a = t^p, H = H_0 t^{-1}$

$$\psi(r,t) \propto \left(\frac{4r}{\alpha}\right)^{p/2} \Psi\left(-\frac{p}{2}; 1-\nu; \frac{\alpha t^2}{4r}\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

"Unviable" cosmologies revisited $a = t^p$, $H = H_0 t^{-1}$

$$\psi(r,t) \propto \left(\frac{4r}{\alpha}\right)^{p/2} \Psi\left(-\frac{p}{2}; 1-\nu; \frac{\alpha t^2}{4r}\right)$$

 $\nu = (1 - 3H_0)/2$

"Unviable" cosmologies revisited $a = t^p$, $H = H_0 t^{-1}$

$$\psi(r,t) \propto \left(\frac{4r}{\alpha}\right)^{p/2} \Psi\left(-\frac{p}{2}; 1-\nu; \frac{\alpha t^2}{4r}\right)$$

$$\nu = (1 - 3H_0)/2$$

$$\begin{split} \Psi(\alpha;\,\beta;\,z) &= \frac{\pi}{\sin\pi\beta} \left[\frac{\Phi(\alpha;\,\beta;\,z)}{\Gamma(1+\alpha-\beta)\Gamma(\beta)} \\ &-z^{1-\beta} \frac{\Phi(1+\alpha-\beta;\,2-\beta;\,z)}{\Gamma(\alpha)\Gamma(2-\beta)} \right], \\ \Phi(\alpha;\,\beta;\,x) &= \frac{\Gamma(\beta)}{\Gamma(\alpha)} \sum_{k=0}^{+\infty} \frac{\Gamma(\alpha+k)}{\Gamma(\beta+k)} \frac{x^k}{k!} \end{split}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

"Unviable" cosmologies revisited $a = t^p$, $H = H_0 t^{-1}$

$$\psi(r,t) \propto \left(\frac{4r}{\alpha}\right)^{p/2} \Psi\left(-\frac{p}{2}; 1-\nu; \frac{\alpha t^2}{4r}\right)$$
 $\nu = (1-3H_0)/2$

$$\begin{split} \Psi(\alpha;\,\beta;\,z) &= \frac{\pi}{\sin\pi\beta} \left[\frac{\Phi(\alpha;\,\beta;\,z)}{\Gamma(1+\alpha-\beta)\Gamma(\beta)} \\ &-z^{1-\beta} \frac{\Phi(1+\alpha-\beta;\,2-\beta;\,z)}{\Gamma(\alpha)\Gamma(2-\beta)} \right], \\ \Phi(\alpha;\,\beta;\,x) &= \frac{\Gamma(\beta)}{\Gamma(\alpha)} \sum_{k=0}^{+\infty} \frac{\Gamma(\alpha+k)}{\Gamma(\beta+k)} \frac{x^k}{k!} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣・のへ⊙

"Unviable" cosmologies revisited $a = t^p$, $H = H_0 t^{-1}$

$$\psi(r,t) \propto \left(\frac{4r}{\alpha}\right)^{p/2} \Psi\left(-\frac{p}{2}; 1-\nu; \frac{\alpha t^2}{4r}\right)$$

 $\nu = (1-3H_0)/2$

$$\begin{split} \Psi(\alpha;\,\beta;\,z) &= \frac{\pi}{\sin\pi\beta} \left[\frac{\Phi(\alpha;\,\beta;\,z)}{\Gamma(1+\alpha-\beta)\Gamma(\beta)} \\ &- z^{1-\beta} \frac{\Phi(1+\alpha-\beta;\,2-\beta;\,z)}{\Gamma(\alpha)\Gamma(2-\beta)} \right] \,, \\ \Phi(\alpha;\,\beta;\,x) &= \frac{\Gamma(\beta)}{\Gamma(\alpha)} \sum_{k=0}^{+\infty} \frac{\Gamma(\alpha+k)}{\Gamma(\beta+k)} \frac{x^k}{k!} \end{split}$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

"Unviable" cosmologies revisited

Figure: p = 1/2, $\nu = -3/2$, r = 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

"Unviable" cosmologies revisited

Figure: p = 1/2, $\nu = -3/2$, r = -1

 Non-locality generates new dynamics (at classical and quantum level)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Non-locality generates new dynamics (at classical and quantum level)
- The CSFT tachyon is cosmologically inequivalent to (and maybe more viable than) the DBI one

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Non-locality generates new dynamics (at classical and quantum level)
- The CSFT tachyon is cosmologically inequivalent to (and maybe more viable than) the DBI one

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Open issues

- Non-locality generates new dynamics (at classical and quantum level)
- The CSFT tachyon is cosmologically inequivalent to (and maybe more viable than) the DBI one

Open issues

Search for analytic cosmological solutions in progress (to appear)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Non-locality generates new dynamics (at classical and quantum level)
- The CSFT tachyon is cosmologically inequivalent to (and maybe more viable than) the DBI one

Open issues

Search for analytic cosmological solutions in progress (to appear)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• Evidence for a nontrivial relation between SBFT and CSFT! (to appear)