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Burden on Inflation

• To provide a successful condition for Big 
bang

• To create Baryons and Dark Matter

Problems with an absolute Gauge Singlet

Couplings  & masses  are arbitrary

No symmetry argument which prohibits 
higher order terms with gauge singlets

How would one guarantee a successful BBN ?



Problem with the Guth’s  Model

Gauge Singlet

Stability under R. C.     ===>    SUPERSYMMETRY

1)   Get rid of the bump  (tuning)
2)   Flattening the potential
3)   Radiative corrections spoil the potential

Hybrid  model

SU(5) Higgs
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SUSY is broken

• MSSM is valid below a certain scale

• Soft SUSY breaking mass term

• The Non-renormalizable term

• The A-term 

1. Introduction

Supersymmetric gauge theories often possess a remarkable vacuum degeneracy at the

classical level. The renormalizable scalar potential in supersymmetry is a sum of squares

of F -terms and D-terms, and so may vanish identically along certain “flat directions”

in field space. The space of all such flat directions is called the moduli space, and the

massless chiral superfields whose expectation values parameterize the flat directions are

known as moduli. The properties of the space of flat directions of a supersymmetric model

are crucial considerations for cosmology and whenever the behavior of the theory at large

field strengths is an issue.

In realistic models such as the Minimal Supersymmetric Standard Model [1] (MSSM),

the “flat” directions are only approximately flat; the vacuum degeneracy of the scalar

potential is lifted by soft supersymmetry-breaking terms, and by non-renormalizable terms

in the superpotential. The soft terms contribute terms to the scalar potential which are

schematically of the form

Vsoft = m2|φ|2 (1.1)

where φ represents the scalar component of the moduli fields. Now, if supersymmetry is

to provide a successful explanation for the hierarchy problem associated with the mass of

the Higgs scalar boson, m must be of the order of the electroweak scale. The terms in

(1.1) can never be forbidden by any symmetry (unlike soft terms of the form φ2 and φ3),

and so we expect that all flat directions will be lifted weakly in this way.

The question of which non-renormalizable terms in the superpotential also lift a given

flat direction is more complicated. It is useful to think of the non-renormalizable super-

potential as an expansion in inverse powers of some large mass scale M (presumably the

Planck scale or some other physical cutoff); schematically

W = Wrenorm +
∑
n>3

λ

Mn−3Φn . (1.2)

Each flat direction may be labeled by an order parameter modulus φ which can take on

values with |φ| < M . Therefore it is sufficient to consider separately the contributions

to the superpotential first from renormalizable terms Wrenorm and then for each value of

n > 3 in turn. Renormalizable flat directions are those for which all F -terms following

from Wrenorm and all D-terms vanish. Of these renormalizable flat directions, some are

lifted when F -terms from the n = 4 superpotential are included; some may survive until
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We argue that all the necessary ingredients for a successful inflation are present in the flat direc-
tions of the Minimally Supersymmetric Standard Model. We show that out of many gauge invariant
combinations of squarks, sleptons and Higgses, there are two directions, LLe, and udd, which are
promising candidates for the inflaton. The model predicts more than 106 e-foldings with an infla-
tionary scale of Hinf ∼ O(1− 10) GeV, provides a tilted spectrum with an amplitude of δH ∼ 10−5

and a negligible tensor perturbation. The temperature of the thermalized plasma could be as low as
Trh ∼ O(1−10) TeV. Parts of the inflaton potential can be determined independently of cosmology
by future particle physics experiments.

The one crucial ingredient still missing in the other-
wise highly successful theory of primordial inflation is
the connection to particle physics, and in particular to
the Standard Model (SM) or its extensions. In almost all
models of inflation the inflaton is treated as a SM gauge
singlet 1, and sometimes a complete gauge singlet whose
origin and couplings are chosen ad-hoc just to fit the
observed cosmological data [3] without bothering about
the relation to the observed particle contents of the uni-
verse [4].

The Minimal Supersymmetric Standard Model
(MSSM) is a well motivated extension of the SM with
many cosmological consequences [5]. MSSM has nearly
300 gauge invariant flat directions made up of squarks,
sleptons, and Higgses [6, 7], whose potentials are van-
ishing in the supersymmetric limit. However, they are
lifted by a soft supersymmetry (SUSY) breaking mass
term, the trilinear A-term and by non-renormalizable
superpotential corrections at scales below the funda-
mental scale, which we take to be the Planck scale,
MP ∼ 2.4 × 1018 GeV.

Although in the MSSM one usually also relies on a
gauge singlet inflaton, in the present paper we shall show
that there are two flat directions which may serve as a
low-scale inflaton; we thus provide the first example of
MSSM inflation occurring at scales well below the Planck
scale and involving a sub-Planckian VEV of the flat di-
rection. Thus we argue that all the inflationary ingre-
dients are present within MSSM and do not necessarily
require anything beyond MSSM. In particular, we show
that the MSSM inflaton is capable of creating the right
amplitude of the scalar perturbations with a tilted spec-
trum. Moreover, in the present model certain properties

1 The only exception is the large N inflationary models [1], where
the gauge invariant quasi-flat directions of SO(N) are responsible
for driving assisted inflation at sub-Planckian VEVS [2].

of the inflaton are in principle testable in future collider
experiment such as Large Hadron Collider (LHC) [8].

Let us begin by considering a flat direction φ with a
non-renormalizable superpotential term

W =
λn

n

Φn

Mn−3
P

, (1)

where Φ is the superfield which contains the flat direc-
tion. Within MSSM all the flat directions are lifted by
n = 9 non-renormalizable operator [7]. Together with the
corresponding A-term and the soft mass term, it gives
rise to the following scalar potential for φ:

V =
1

2
m2

φ φ2+A cos(nθ+θA)
λnφn

n Mn−3
P

+λ2
n

φ2(n−1)

M2(n−3)
P

, (2)

where mφ is the soft SUSY breaking mass for φ. Here
φ and θ denote the radial and the angular coordinates
of the complex scalar field Φ = φ exp[iθ] respectively,
while θA is the phase of the A-term (thus A is a positive
quantity with a dimension of mass). Note that the first
and third terms in Eq. (2) are positive definite, while
the A-term leads to a negative contribution along the
directions where cos(nθ + θA) < 0.

The maximum impact from the A-term is obtained
when cos(nθ+θA) = −1 (which occurs for n values of θ).
Along these directions V has a secondary minimum at

φ = φ0 ∼ (
mφMn−3

P

)1/n−2 $ MP (3)

(the global minimum is at φ = 0), provided that

A2 ≥ 8(n − 1)m2
φ . (4)

At this minimum the curvature of the potential along
the radial direction is +m2

φ (it is easy to see that the
curvature is positive along the angular direction, too),
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The one crucial ingredient still missing in the other-
wise highly successful theory of primordial inflation is
the connection to particle physics, and in particular to
the Standard Model (SM) or its extensions. In almost all
models of inflation the inflaton is treated as a SM gauge
singlet 1, and sometimes a complete gauge singlet whose
origin and couplings are chosen ad-hoc just to fit the
observed cosmological data [3] without bothering about
the relation to the observed particle contents of the uni-
verse [4].

The Minimal Supersymmetric Standard Model
(MSSM) is a well motivated extension of the SM with
many cosmological consequences [5]. MSSM has nearly
300 gauge invariant flat directions made up of squarks,
sleptons, and Higgses [6, 7], whose potentials are van-
ishing in the supersymmetric limit. However, they are
lifted by a soft supersymmetry (SUSY) breaking mass
term, the trilinear A-term and by non-renormalizable
superpotential corrections at scales below the funda-
mental scale, which we take to be the Planck scale,
MP ∼ 2.4 × 1018 GeV.

Although in the MSSM one usually also relies on a
gauge singlet inflaton, in the present paper we shall show
that there are two flat directions which may serve as a
low-scale inflaton; we thus provide the first example of
MSSM inflation occurring at scales well below the Planck
scale and involving a sub-Planckian VEV of the flat di-
rection. Thus we argue that all the inflationary ingre-
dients are present within MSSM and do not necessarily
require anything beyond MSSM. In particular, we show
that the MSSM inflaton is capable of creating the right
amplitude of the scalar perturbations with a tilted spec-
trum. Moreover, in the present model certain properties

1 The only exception is the large N inflationary models [1], where
the gauge invariant quasi-flat directions of SO(N) are responsible
for driving assisted inflation at sub-Planckian VEVS [2].

of the inflaton are in principle testable in future collider
experiment such as Large Hadron Collider (LHC) [8].

Let us begin by considering a flat direction φ with a
non-renormalizable superpotential term

W =
λn

n

Φn

Mn−3
P

, (1)

where Φ is the superfield which contains the flat direc-
tion. Within MSSM all the flat directions are lifted by
n = 9 non-renormalizable operator [7]. Together with the
corresponding A-term and the soft mass term, it gives
rise to the following scalar potential for φ:

V =
1

2
m2

φ φ2+A cos(nθ+θA)
λnφn

n Mn−3
P

+λ2
n

φ2(n−1)

M2(n−3)
P

, (2)

where mφ is the soft SUSY breaking mass for φ. Here
φ and θ denote the radial and the angular coordinates
of the complex scalar field Φ = φ exp[iθ] respectively,
while θA is the phase of the A-term (thus A is a positive
quantity with a dimension of mass). Note that the first
and third terms in Eq. (2) are positive definite, while
the A-term leads to a negative contribution along the
directions where cos(nθ + θA) < 0.

The maximum impact from the A-term is obtained
when cos(nθ+θA) = −1 (which occurs for n values of θ).
Along these directions V has a secondary minimum at

φ = φ0 ∼ (
mφMn−3

P

)1/n−2 $ MP (3)

(the global minimum is at φ = 0), provided that

A2 ≥ 8(n − 1)m2
φ . (4)

At this minimum the curvature of the potential along
the radial direction is +m2

φ (it is easy to see that the
curvature is positive along the angular direction, too),

λn ∼ O(1)

ph/0605035
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2 Possibilities

X: - Y: -

X: - Y: -

A
2 ≤ 8(n − 1)m2

φ

A
2 ≥ 8(n − 1)m2

φ

Fast roll ==> No Inflation

Eternal 
Inflation

Guth’s 
Problem
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The one crucial ingredient still missing in the other-
wise highly successful theory of primordial inflation is
the connection to particle physics, and in particular to
the Standard Model (SM) or its extensions. In almost all
models of inflation the inflaton is treated as a SM gauge
singlet 1, and sometimes a complete gauge singlet whose
origin and couplings are chosen ad-hoc just to fit the
observed cosmological data [3] without bothering about
the relation to the observed particle contents of the uni-
verse [4].

The Minimal Supersymmetric Standard Model
(MSSM) is a well motivated extension of the SM with
many cosmological consequences [5]. MSSM has nearly
300 gauge invariant flat directions made up of squarks,
sleptons, and Higgses [6, 7], whose potentials are van-
ishing in the supersymmetric limit. However, they are
lifted by a soft supersymmetry (SUSY) breaking mass
term, the trilinear A-term and by non-renormalizable
superpotential corrections at scales below the funda-
mental scale, which we take to be the Planck scale,
MP ∼ 2.4 × 1018 GeV.

Although in the MSSM one usually also relies on a
gauge singlet inflaton, in the present paper we shall show
that there are two flat directions which may serve as a
low-scale inflaton; we thus provide the first example of
MSSM inflation occurring at scales well below the Planck
scale and involving a sub-Planckian VEV of the flat di-
rection. Thus we argue that all the inflationary ingre-
dients are present within MSSM and do not necessarily
require anything beyond MSSM. In particular, we show
that the MSSM inflaton is capable of creating the right
amplitude of the scalar perturbations with a tilted spec-
trum. Moreover, in the present model certain properties

1 The only exception is the large N inflationary models [1], where
the gauge invariant quasi-flat directions of SO(N) are responsible
for driving assisted inflation at sub-Planckian VEVS [2].

of the inflaton are in principle testable in future collider
experiment such as Large Hadron Collider (LHC) [8].

Let us begin by considering a flat direction φ with a
non-renormalizable superpotential term

W =
λn

n

Φn

Mn−3
P

, (1)

where Φ is the superfield which contains the flat direc-
tion. Within MSSM all the flat directions are lifted by
n = 9 non-renormalizable operator [7]. Together with the
corresponding A-term and the soft mass term, it gives
rise to the following scalar potential for φ:

V =
1

2
m2

φ φ2+A cos(nθ+θA)
λnφn

n Mn−3
P

+λ2
n

φ2(n−1)

M2(n−3)
P

, (2)

where mφ is the soft SUSY breaking mass for φ. Here
φ and θ denote the radial and the angular coordinates
of the complex scalar field Φ = φ exp[iθ] respectively,
while θA is the phase of the A-term (thus A is a positive
quantity with a dimension of mass). Note that the first
and third terms in Eq. (2) are positive definite, while
the A-term leads to a negative contribution along the
directions where cos(nθ + θA) < 0.

The maximum impact from the A-term is obtained
when cos(nθ+θA) = −1 (which occurs for n values of θ).
Along these directions V has a secondary minimum at

φ = φ0 ∼ (
mφMn−3

P

)1/n−2 $ MP (3)

(the global minimum is at φ = 0), provided that

A2 ≥ 8(n − 1)m2
φ . (4)

At this minimum the curvature of the potential along
the radial direction is +m2

φ (it is easy to see that the
curvature is positive along the angular direction, too),
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Confronting the data

• Deviation from the 
saddle point
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Figure 2: The red curve depicts the potential, V (x) ≡ V (φ)/(0.5m2
φM2

P(mφ/MP)1/2),

where x ≡ (λnMP/mφ)1/4(φ/MP), for the saddle point (shown by the black dot) when

δ = 1. The blue curve illustrates the potential when δ = 1+
√

40/1000, where the two black

dots, one on right shows the minimum value φ− and on the left shows the maximum value,

φ+. The green curve portrays the potential for the opposite case when δ = 1−√
40/1000.

The black dot is the point of inflection.

Now we integrate Eq. (3.9) in the slow-roll approximation, using a new variable

u = x − x−, for which the equation of motion becomes 3hu′ = −u(u − α). The

solution is, in terms of the number of e-folds,

N = hτ = −3h2

α
log

(
1 − α

u

)
$ 3h2√

u(u − α)
=

3h2φ0√
(φ − φ−)(φ − φ+)

, (3.14)

which diverges (as it should) at the extrema of the potential, where we have expanded

the log to second order in α 11. From Eqs. (2.12,3.13,3.14), it turns out that the

number of e-folds from φself to the end of inflation at φend is again of order 103.

The required number of e-folds for relevant perturbations (NCOBE ∼ 50) deter-

mines the value of φCOBE,

|(φCOBE − φ−)(φCOBE − φ+)|1/2 =
3h2φ0

NCOBE
=

φ3
0

2n(n − 1)M2
P NCOBE

, (3.15)

11Note that in the limit α → 0, we recover the usual expression Eq. (2.13).

– 13 –

0.92 ≤ ns ≤ 1

Allahverdi,   Dutta,   Mazumdar,   
 hep-ph/0702112



What are the candidates ?

ar
X

iv
:h

ep
-p

h
/0

6
0
5
0
3
5
 v

1
  
 3

 M
ay

 2
0
0
6

NORDITA-2006-13, IFT-UAM/CSIC-06-18, HIP-2006-22/TH, hep-ph/0605035

Gauge invariant MSSM inflaton

Rouzbeh Allahverdi1,2, Juan Garcia-Bellido3, Kari Enqvist4, and Anupam Mazumdar5
1 Perimeter Institute for Theoretical Physics, Waterloo, ON, N2L 2Y5, Canada

2 Department of Physics and Astronomy, McMaster University, Hamilton, ON, L8S 4M1, Canada.
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singlet 1, and sometimes a complete gauge singlet whose
origin and couplings are chosen ad-hoc just to fit the
observed cosmological data [3] without bothering about
the relation to the observed particle contents of the uni-
verse [4].

The Minimal Supersymmetric Standard Model
(MSSM) is a well motivated extension of the SM with
many cosmological consequences [5]. MSSM has nearly
300 gauge invariant flat directions made up of squarks,
sleptons, and Higgses [6, 7], whose potentials are van-
ishing in the supersymmetric limit. However, they are
lifted by a soft supersymmetry (SUSY) breaking mass
term, the trilinear A-term and by non-renormalizable
superpotential corrections at scales below the funda-
mental scale, which we take to be the Planck scale,
MP ∼ 2.4 × 1018 GeV.

Although in the MSSM one usually also relies on a
gauge singlet inflaton, in the present paper we shall show
that there are two flat directions which may serve as a
low-scale inflaton; we thus provide the first example of
MSSM inflation occurring at scales well below the Planck
scale and involving a sub-Planckian VEV of the flat di-
rection. Thus we argue that all the inflationary ingre-
dients are present within MSSM and do not necessarily
require anything beyond MSSM. In particular, we show
that the MSSM inflaton is capable of creating the right
amplitude of the scalar perturbations with a tilted spec-
trum. Moreover, in the present model certain properties

1 The only exception is the large N inflationary models [1], where
the gauge invariant quasi-flat directions of SO(N) are responsible
for driving assisted inflation at sub-Planckian VEVS [2].

of the inflaton are in principle testable in future collider
experiment such as Large Hadron Collider (LHC) [8].

Let us begin by considering a flat direction φ with a
non-renormalizable superpotential term

W =
λn

n

Φn

Mn−3
P

, (1)

where Φ is the superfield which contains the flat direc-
tion. Within MSSM all the flat directions are lifted by
n = 9 non-renormalizable operator [7]. Together with the
corresponding A-term and the soft mass term, it gives
rise to the following scalar potential for φ:

V =
1

2
m2

φ φ2+A cos(nθ+θA)
λnφn

n Mn−3
P

+λ2
n

φ2(n−1)

M2(n−3)
P

, (2)

where mφ is the soft SUSY breaking mass for φ. Here
φ and θ denote the radial and the angular coordinates
of the complex scalar field Φ = φ exp[iθ] respectively,
while θA is the phase of the A-term (thus A is a positive
quantity with a dimension of mass). Note that the first
and third terms in Eq. (2) are positive definite, while
the A-term leads to a negative contribution along the
directions where cos(nθ + θA) < 0.

The maximum impact from the A-term is obtained
when cos(nθ+θA) = −1 (which occurs for n values of θ).
Along these directions V has a secondary minimum at

φ = φ0 ∼ (
mφMn−3

P

)1/n−2 $ MP (3)

(the global minimum is at φ = 0), provided that

A2 ≥ 8(n − 1)m2
φ . (4)

At this minimum the curvature of the potential along
the radial direction is +m2

φ (it is easy to see that the
curvature is positive along the angular direction, too),

assuming initial conditions such that the flat direction starts in the vicinity of φ0 with

φ̇ ≈ 0. Inflation ends when either of the slow roll parameters, ε ≡ (M2
P/2)(V ′/V )2

and η ≡ M2
P(V ′′/V ), becomes of O(1). It happens that |η| ∼ 1 when φ ≈ φend, where

(φ0 − φend) ∼ φ3
0

4n(n − 1)M2
P

. (2.12)

The number of e-foldings during the slow roll from φ to φend is given by

Ne(φ) =

∫ φend

φ

Hinfdφ

φ̇
% φ3

0

2n(n − 1)M2
P(φ0 − φ)

, (2.13)

where we have used V ′(φ) ∼ (φ − φ0)2V ′′′(φ0) (this is justified since V ′(φ0) ∼
0, V ′′(φ0) ∼ 0), and Eq. (2.11). The total number of e-foldings in the slow roll

regime is then found from Eq.(2.9)

Ntot % 1

2n(n − 1)

( φ2
0

mφMP

)1/2

. (2.14)

The observationally relevant perturbations are generated when φ ≈ φCOBE. The num-

ber of e-foldings between φCOBE and φend, denoted by NCOBE follows from Eq. (2.13)

NCOBE % φ3
0

2n(n − 1)M2
P(φ0 − φCOBE)

. (2.15)

The amplitude of perturbations thus produced is given by

δH ≡ 1

5π

H2
inf

φ̇
% 1

5π

√
2

3
n(n − 1)(n − 2)

(mφMP

φ2
0

)
N 2

COBE, (2.16)

where we have used Eqs.(2.8,2.10,2.15). Again after using these equations, the spec-

tral tilt of the power spectrum and its running are found to be

ns = 1 + 2η − 6ε % 1 − 4

NCOBE
, (2.17)

d ns

d ln k
= − 4

N 2
COBE

.

2.3 Properties and predictions

As discussed in [1], among the about 300 flat directions there are two that can lead

to a successful inflation along the lines discussed above.

One is udd which, up to an overall phase factor, is parameterized by

uα
i =

1√
3
φ , dβ

j =
1√
3
φ , dγ

k =
1√
3
φ . (2.18)
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Here 1 ≤ α, β, γ ≤ 3 are color indices, and 1 ≤ i, j, k ≤ 3 denote the quark families.

The flatness constraints require that α "= β "= γ and j "= k.

The other direction is LLe, parameterized by (again up to an overall phase

factor)

La
i =

1√
3

(
0

φ

)
, Lb

j =
1√
3

(
φ

0

)
, ek =

1√
3
φ , (2.19)

where 1 ≤ a, b ≤ 2 are the weak isospin indices and 1 ≤ i, j, k ≤ 3 denote the lepton

families. The flatness constraints require that a "= b and i "= j "= k. Both these flat

directions are lifted by n = 6 non-renormalizable operators,

W6 ⊃ 1

M3
P

(LLe)(LLe) , W6 ⊃ 1

M3
P

(udd)(udd) . (2.20)

The reason for choosing either of these two flat directions7 is twofold: (i) a non-

trivial A-term arises, at the lowest order, only at n = 6; and (ii) we wish to obtain

the correct COBE normalization of the CMB spectrum.

Those MSSM flat directions which are lifted by operators with dimension n = 7, 9

are such that the superpotential term contains at least two monomials, i.e. is of the

type

W ∼ 1

Mn−3
P

ΨΦn−1 . (2.21)

If φ represents the flat direction, then its VEV induces a large effective mass term for

ψ, through Yukawa couplings, so that 〈ψ〉 = 0. Hence Eq. (2.21) does not contribute

to the A-term.

More importantly, as we will see, all other flat directions except those lifted by

n = 6 fail to yield the right amplitude for the density perturbations. Indeed, as can

be seen in Eq. (2.7), the value of φ0, and hence also the energy density, depend on n.

According to the arguments presented above, successful MSSM flat direction

inflation has the following model parameters:

mφ ∼ 1 − 10 TeV , n = 6 , A =
√

40mφ , λ ∼ O(1) . (2.22)

Here we assume that λ (we drop the subscript ”6”) is of order one, which is the most

natural assumption when M = MP .

7Since LLe are udd are independently D- and F -flat, inflation could take place along any of
them but also, at least in principle, simultaneously. The dynamics of multiple flat directions are
however quite involved [19].
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1. Introduction

Supersymmetric gauge theories often possess a remarkable vacuum degeneracy at the

classical level. The renormalizable scalar potential in supersymmetry is a sum of squares

of F -terms and D-terms, and so may vanish identically along certain “flat directions”

in field space. The space of all such flat directions is called the moduli space, and the

massless chiral superfields whose expectation values parameterize the flat directions are

known as moduli. The properties of the space of flat directions of a supersymmetric model

are crucial considerations for cosmology and whenever the behavior of the theory at large

field strengths is an issue.

In realistic models such as the Minimal Supersymmetric Standard Model [1] (MSSM),

the “flat” directions are only approximately flat; the vacuum degeneracy of the scalar

potential is lifted by soft supersymmetry-breaking terms, and by non-renormalizable terms

in the superpotential. The soft terms contribute terms to the scalar potential which are

schematically of the form

Vsoft = m2|φ|2 (1.1)

where φ represents the scalar component of the moduli fields. Now, if supersymmetry is

to provide a successful explanation for the hierarchy problem associated with the mass of

the Higgs scalar boson, m must be of the order of the electroweak scale. The terms in

(1.1) can never be forbidden by any symmetry (unlike soft terms of the form φ2 and φ3),

and so we expect that all flat directions will be lifted weakly in this way.

The question of which non-renormalizable terms in the superpotential also lift a given

flat direction is more complicated. It is useful to think of the non-renormalizable super-

potential as an expansion in inverse powers of some large mass scale M (presumably the

Planck scale or some other physical cutoff); schematically

W = Wrenorm +
∑
n>3

λ

Mn−3Φn . (1.2)

Each flat direction may be labeled by an order parameter modulus φ which can take on

values with |φ| < M . Therefore it is sufficient to consider separately the contributions

to the superpotential first from renormalizable terms Wrenorm and then for each value of

n > 3 in turn. Renormalizable flat directions are those for which all F -terms following

from Wrenorm and all D-terms vanish. Of these renormalizable flat directions, some are

lifted when F -terms from the n = 4 superpotential are included; some may survive until

2

Baryonic 

Leptonic

Both the directions are lifted by themselves

mφ ∼ 1TeV, n = 6, A =
√

40mφ

λn ∼ 1 → SU(5), ∼ 0.01 → SO(10)
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Figure 1: Renormalization group running of LLē mass squared with φ0 = 2.6 · 1014GeV

(corresponding to n = 6, mφ(φ0) = 1 TeV and λ = 1) and the ratio of gaugino mass and

flat direction mass at the GUT scale ξ = 2 (dashed), ξ = 1 (solid) and ξ = 0.5 (dash-dot).

Thus radiative corrections modify α, or the ratio A/m, by terms of order of

O(∞′−∈. Since slow roll requires that α < 10−8, it would appear that we need to

finetune the potential up to third or fourth order in perturbation theory, but not at all

orders. However, although not completely disastrous, this can hardly be considered a

satisfactory situation, and in the Conclusions we speculate about possible remedies.

4.3 The constraints at LHC

Let us recall that the constraint on the mass of the n = 6 flat direction inflaton in

Eq. (2.22) reads

mφ(φ0) = 550 GeV · λ−1
n

(NCOBE

50

)−4

. (4.18)

As mentioned earlier, this is the bound on the mass of the flat direction during

inflation, determined at the scale φ = φ0. As the inflaton mass runs from φ0 down

to the LHC energy scales, the inflaton mass will also get scaled.
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As mentioned earlier, this is the bound on the mass of the flat direction during

inflation, determined at the scale φ = φ0. As the inflaton mass runs from φ0 down

to the LHC energy scales, the inflaton mass will also get scaled.
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Allahverdi,  Enqvist,  Garcia-Bellido,  Jokinen,  Mazumdar (2006)



CDM, Inflation & LHC
• If  MSSM is the correct description of nature  then it must provide 

answers to Inflation & DM with an overlapping parameter region
5

of the universe and other experimental results. We find
that tan β needs to be smaller to allow for smaller values
of ns < 1. It is also interesting to note that the allowed
region of mφ, as required by the inflation data for λ = 1
lies in the stau-neutralino coannihilation region which re-
quires smaller values of the SUSY particle masses. The
SUSY particles in this parameter space are, therefore,
within the reach of the LHC very quickly. The detection
of the region at the LHC can be done and the masses can
be measured accurately [29].

So far we have chosen λ = 1. Now if λ is small e.g.,
λ <∼ 0.1, we find allowed values of mφ to be large. In this
case the dark matter allowed region requires the light-
est neutralino to have larger Higgsino component in the
mSUGRA model. As we will see shortly, this small value
of λ is accommodated in SO(10) type model. In figure 5,
we show ns = 1, 0.98 contours for δH = 1.91 × 10−5 in
the mSUGRA parameter space for tan β = 10.

In figure 6, we show the contours of λ for different val-
ues of mφ which are allowed by ns and δH = 1.91×10−3.
The blue bands show the dark matter allowed regions
for tan β = 10. The band on the left is due to the
stau-neutralino coannihilation region allowed by other
constraints and the allowed values of λ are 0.3-1. The
gluino masses for the minimum and maximum values of
mφ allowed by the dark matter and other constraints are
765 GeV and 2.1 TeV respectively. The squarks(barring
the stop squarks) masses are similar to the gluino mass
in this region. The band is slightly curved due to the
shifting of φ0 as a function λ. (We solve for SUSY pa-
rameters from the inflaton mass at φ0). The band on
the right which continues beyond the plotting range of
the figure 6 is due to the Higgsino dominated dark mat-
ter. We find that λ is mostly ≤ 0.1 in this region and
mφ > 1.75 TeV. In this case the squark masses are much
larger than the gluino mass since m0 is much larger than
m1/2.

V. GRAND UNIFIED MODELS AND
INCLUSION OF RIGHT-HANDED NEUTRINOS

A. Embedding MSSM inflation in SU(5) or SO(10)
GUT

As we have pointed out, mSUGRA makes a mild as-
sumption that there exists a GUT physics which encom-
passes MSSM beyond the unification scale MG

10. Here
we wish to understand how such embedding would affect
inflationary scenario, for instance, would it be possible
to single out either LLe or udd as a candidate for the
MSSM inflaton.

10 We remind the readers that inflation occurs around a flat direc-
tion VEV φ0 ∼ 1014 GeV. Since φ0 " MG, heavy GUT degrees
of freedom play no role in the dynamics of MSSM inflation, and
hence they can be ignored.
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FIG. 3: The contours for different values of ns and δH are
shown in the m0 − m1/2 plane for tan β = 10. We show the
dark matter allowed region narrow blue corridor, (g-2)µ region
(light blue) for aµ ≤ 11× 10−8, Higgs mass ≤ 114 GeV (pink
region) and LEPII bounds on SUSY masses (red). We also
show the the dark matter detection rate by vertical blue lines.

The lowest order non-renormalizable superpotential
terms which lift LLe and udd are (see Eq. (1)):

(LLe)2

M3
P

,
(udd)2

M3
P

. (16)

It is generically believed that gravity breaks global sym-
metries. Then all gauge invariant terms which are MP

suppressed should appear with λ ∼ O(1). Obviously
the above terms in Eq. (16) are invariant under the SM.
Once the SM is embedded within a GUT at the scale
MG, where gauge couplings are unified, the gauge group
will be enlarged. Then the question arises whether such
terms in Eq. (16) are invariant under the GUT gauge
group or not. Note that a GUT singlet is also a singlet
under the SM, however, the vice versa is not correct. To
answer this question, let us consider SU(5) and SO(10)
cases separately.

• SU(5):
We briefly recollect representations of matter fields
in this case: L and d belong to 5̄, while e and u
belong to 10 of SU(5) group. Thus under SU(5)
the superpotential terms in Eq. (16) read

5̄× 5̄× 10× 5̄× 5̄ × 10
M3

P

. (17)

This product clearly includes a SU(5) singlet.
Therefore in the case of SU(5), we expect that
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Embedding MSSM inflation 
within GUT

• Right handed Neutrino lifts the LLe direction before 
n=6, but  udd  survives till  n=6

• udd has more D-terms than LLe

W ⊃
NLLe

MGUT

W ⊃
Nudd

MGUT

udd  is the  Inflaton:     A baryon,  SUSY partner of the 
Neutron

Allahverdi,  Dutta,  Mazumdar,   hep-ph/0702112



After Inflation

• The flat direction Couplings are well known: SM Yukawas and Gauge 
interactions 

• Flat direction VEV breaks part of SM gauge group

• Baryon dissociates into HEAVY Gluons/Gluinos  and  Fermion/Sfermion

• Thermalization is complete when the flat direction evaporates completely.

X: - Y: -

Trh ∼ 10
4
GeV

Allahverdi,  Enqvist,  Garcia-Bellido,  Jokkinen,  Mazumdar,  (2007)



Challenges & Future prospects
• How to maintain the potential flat ?

• How to start at the flat part of the potential ?

X: - Y: -

SUSY helps, nevertheless one requires fine tuning

Needs high scale inflation,  i.e.   
String Landscape 

Allahverdi,  Enqvist,  Garcia-Bellido,  Mazumdar,  Phys.  Rev.  Lett.  (2006)
Allahverdi,  Enqvist,  Garcia-Bellido,  Jokinen,  Mazumdar  (2006)

Allahverdi,  Frey,  Mazumdar  (2007)



Addressing the initial condition problem ?

• Phenomenologically  incomplete

• String theory provides multiple vacua

• Multiple vacua leads to eternal inflation

2 Tunneling in the Landscape

There are two related mechanisms for making transitions between vacua: one due to tunneling
[28] and another due to stochastic diffusion processes [18, 29]. A somewhat more detailed
discussion of these mechanisms, and the issues associated with them, can be found in [27]. We
summarize the salient points below.

Tunneling between vacua produces bubbles of new vacuum, that look like infinite open
Friedmann universes to observers inside. If the tunneling goes to dS space, then the bubble
expands exponentially with the velocity of its walls approaching that of light. (In comoving
coordinates these bubbles approach some maximal value and freeze. This maximal value de-
pends on the time when the bubble is formed, and is exponentially smaller for bubbles formed
later on [30].) If the tunneling goes to a state with a negative vacuum energy V , the infinite
universe inside it collapses within a time of the order |V |−1/2, in Planck units. These negative
energy, AdS vacua then play the role of sinks for probability currents in the landscape.

Figure 1: Coleman-De Luccia tunneling may go in both directions.

Let us consider two dS vacua, dSi, with vacuum energy density Vi = V (φi), Fig. 1. Without
taking gravity into account, the tunneling may go only from the upper minimum to the lower
minimum, but in the presence of gravity tunneling may occur in both directions, which is
emphasized in Fig. 1. According to Coleman and De Luccia [28], the tunneling probability
from dS1 to dS2 is given by

Γ12 = e−B = e−S(φ)+S1 , (1)

where S(φ) is the Euclidean action for the tunneling trajectory, and S1 = S(φ1) is the Euclidean
action for the initial configuration φ = φ1,

S1 = −
24π2

V1
< 0 . (2)

This action has a simple sign-reversal relation to the entropy of de Sitter space, S1:

S1 = −S1 = +
24π2

V1
. (3)

4

Figure 4: A one-dimensional potential with three positive and one negative minima

Firstly, when Γ1s ! Γ21, we find:

P1

P2
"

Γ21

Γ12
# 1 and

P3

P2
"

Γ23

Γ32
! 1.

In this limit the thermodynamic ratios (9) are maintained because Γ21 # Γ12 and Γ32 # Γ23.
When Γ1s # Γ21 and Γ21 ! Γ32, we find:

P1

P2
"

Γ21

Γ1s
! 1 and

P3

P2
"

Γ23

Γ32
! 1.

Here the thermal ratio of P1 to P2 is broken, whilst that of P2 to P3 is maintained. Lastly,
when Γ1s # Γ21 and Γ21 # Γ32, we find:

P1

P2
"

Γ21

Γ1s
! 1 and

P3

P2
"

Γ21

Γ32
# 1.

Now the thermal ratio of P1 to P2, and the ratio of P2 to P3, is broken.

Whilst the equations with three dS vacua are more complicated than the case for two, it
now appears that the interpretation can be straightforwardly extended. The ratio P2/P1 is
not affected (to leading order) by the presence of the extra minimum, and again its form is
prescribed by the magnitude of Γ1s relative to Γ21. The new ratio P3/P2 is found to take its
thermal value if P2/P1 has a thermal ratio. If P2/P1 has its thermal ratio broken then the rate
Γ12 becomes negligible, and the minimum 1 acts as a sink for the remaining two dS vacua. The
ratio P3/P2 can then be calculated as if they were a system of two dS spaces with vacuum 2
being allowed to decay to a sink.

5.3 A Simple “Multidimensional” Landscape

We now wish to consider the case of a multi-dimensional potential, which we expect to be a
slightly more realistic model of the landscape. Again, we work with an extension of the simple

13

Guths’ model of inflation Multiverse due to landscape

∼ 10
500

− 10
1000

Allahverdi,  Frey,  Mazumdar  (2007)



Eternal Inflation ending in MSSM vaccum 

• Universe starts at a string scale

• The final stage of inflation is driven by 
MSSM inflation

Eternal Inflation &
MSSM Inflation

Allahverdi,  Frey,  Mazumdar  (2007)



Message & Conclusion

• Physics is more enjoyable without absolute Gauge 
Singlets

In order to understand the observable Universe  the 
Weak Scale Physics is sufficient !!



CMB data

– 75 –

Fig. 18.— The WMAP three-year power spectrum (in black) compared to other recent measurements of
the CMB angular power spectrum, including Boomerang (Jones et al. 2005), Acbar (Kuo et al. 2004), CBI
(Readhead et al. 2004), and VSA (Dickinson et al. 2004). For clarity, the l < 600 data from Boomerang
and VSA are omitted; as the measurements are consistent with WMAP, but with lower weight. These
data impressively confirm the turnover in the 3rd acoustic peak and probe the onset of Silk damping.
With improved sensitivity on sub-degree scales, the WMAP data are becoming an increasingly important
calibration source for high-resolution experiments.

Confronting the CMB data
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Fig. 14.— Joint two-dimensional marginalized contours (68% and 95% confidence lev-

els) for inflationary parameters (r0.002, ns) predicted by monomial potential models,

V (φ) ∝ φn. We assume a power-law primordial power spectrum, dns/d ln k = 0, as these

models predict the negligible amount of running index, dns/d ln k ≈ −10−3. (Upper left)

WMAP only. (Upper right) WMAP+SDSS. (Lower left) WMAP+2dFGRS. (Lower right)

WMAP+CBI+VSA. The dashed and solid lines show the range of values predicted

for monomial inflaton models with 50 and 60 e-folds of inflation (equation (13), re-

spectively. The open and filled circles show the predictions of m2φ2 and λφ4 models

for 50 and 60 e-folds of inflation. The rectangle denotes the scale-invariant Harrison-

Zel’dovich-Peebles (HZ) spectrum (ns = 1, r = 0). Note that the current data prefers

the m2φ2 model over both the HZ spectrum and the λφ4 model by likelihood ratios

greater than 50.

δT

T
∝ δH ∼

1

5π

H2

inf

φ̇

∼
mφMP

φ2
0

N 2
COBE ∼ 10

−5

P(k) ∼ k
ns−1

2

When the condit ion 3

A =
√
8(n − 1)mφ , (3)

is sat isfied, then there exists a saddle point at

φ0 =
( mφM n−3

λn
√
2n − 2

)1/ (n−2)
, (4)

such that V ′(φ0) = V ′′(φ0) = 0. At this point we have

V (φ0) =
(n − 2)2
2n(n − 1)m

2
φφ20 , (5)

and in its vicinity

V (φ) = V (φ0) +
( 1
3!

)
V ′′′(φ0)(φ − φ0)3 + ..., (6)

where

V ′′′(φ0) = 2(n − 2)2m
2
φ

φ0
. (7)

Hence there is a plateau where the potent ial is very flat
and inflat ion is driven by V ′′′(φ0).
TheHubble expansion rate during inflat ion is given by

H inf =
(n − 2)√
6n(n − 1)

mφφ0
M P

. (8)

When φ isvery closeto φ0 thefirst derivat ive isext remely
small, and we are in a self-reproduct ion (or eternal infla-
t ion) regime where quantum di usion is dominant . But
eventually classical frict ion wins and slow roll begins at
φ ≈ φsel f ,

(φ0 − φsel f ) $
(mφφ20
M 2
P

)1/ 2
φ0 . (9)

The equat ion of mot ion for the φ field in the slow roll
approximat ion is given by:

3H inf φ̇ = −12V
′′′(φ0)(φ − φ0)2 . (10)

Inflat ion ends when either of the slow roll parameters,
ε ≡ (M 2

P / 2)(V ′/ V )2 or η ≡ M 2
P (V ′′/ V ), becomes O(1).

It happens that |η| ∼ 1 at φend , where

(φ0 − φend ) ∼ φ30
4n(n − 1)M 2

P
. (11)

We can est imate the total number of e-foldings during
the slow roll phase, from φ to φend ,

Ne(φ) =
∫ φen d

φ

H infdφ
φ̇

$ φ30
2n(n − 1)M 2

P (φ0 − φ) , (12)

3 The importance of A -term was first highlighted in Ref. [6] in

connect ion to inflat ion and density perturbat ions.

where we have used Eq. (10). The total number of e-
foldings in the slow roll regime is then found from Eq.(9),

N t ot $ 1
2n(n − 1)

( φ20
mφM P

)1/ 2
. (13)

The observat ionally relevant perturbat ions are gener-
ated when φ ≈ φCOBE . The number of e-foldings be-
tween φCOBE and φend , denoted by NCOBE , follows from
Eq. (12)

NCOBE $ φ30
2n(n − 1)M 2

P (φ0 − φCOBE )
. (14)

The amplitude of the scalar perturbat ions, generated
during the slow roll phase is given by [1, 2, 5]:

δH ≡ 1
5π
H 2
inf
φ̇

$ 1
5π

√
2
3n(n − 1)(n−2)

(mφM P
φ20

)
N 2
COBE ,

(15)
where we have used Eqs.(6,8,14).
Again after using these equat ions, the spectral t ilt of

thepower spect rum and its running are found to be [1, 2]

ns = 1+ 2η − 6ε $ 1− 4
NCOBE

, (16)

dns
d ln k = − 4

N 2
COBE

. (17)

For soft supersymmetry breaking parametersmφ and
A in the rangeof 1−10 TeV, perturbat ionsof the correct
size are obtained for φ0 ∼ 1014 − 1015 GeV [1, 2, 5].
This results in V (φ0) ≤ 1038(GeV)4. Since reheat ing in
our case happens instantaneously [5], we find NCOBE ≤
50 [13].
The expression for the t ilt in the power spectrum, see

Eq. (16), then implies that ns $ 0.92. Although, the
t ilt is compat ible with the current WMAP 3-years data
within 2σ [12], it is st ill somewhat towards the lower side.
A very natural quest ion which arises out of this sce-

nario is whether the spect ral t ilt can at all be improved
from 0.92 or not . Note that the t ilt in Eq. (16) is a ro-
bust predict ion of a slow roll inflat ion near the saddle
point , as it does not depend on the detailed form of the
potent ial. Hence any improvement , ns > 0.92 requires
deviat ions from the saddle point condit ion Eq. (3).
In the coming sect ion, we argue that it is possible to

achieve the spect ral t ilt ns > 0.92 within our setup.

I I I . D EV IAT ION FROM T HE SADDLE POIN T

To facilitate the discussion, let us define

δ ≡ A2
8(n − 1)m2

φ

≡ 1 ±
(n − 2

2
)2

α2, (18)

0.92 ≤ ns ≤ 1
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Figure 2: The red curve depicts the potential, V (x) ≡ V (φ)/ (0.5m2
φM 2

P
(mφ/MP)1/ 2),

where x ≡ (λnMP / mφ)1/ 4(φ/MP), for the saddle point (shown by the black dot) when

δ = 1. The blue curve illustrates the potential when δ = 1+
√

40/ 1000, where the two black

dots, one on right shows the minimum value φ− and on the left shows the maximum value,

φ+ . The green curve portrays the potential for the opposite case when δ = 1 −√
40/ 1000.

The black dot is the point of inflection.

Now we integrate Eq. (3.9) in the slow-roll approximat ion, using a new variable
u = x − x−, for which the equat ion of mot ion becomes 3hu′ = −u(u − α). The
solut ion is, in terms of the number of e-folds,

N = hτ = −3h
2

α
log

(
1− α

u
)
$ 3h2√

u(u− α)
= 3h2φ0√

(φ − φ−)(φ − φ+ )
, (3.14)

which diverges (as it should) at theextrema of thepotent ial, wherewehaveexpanded
the log to second order in α 11. From Eqs. (2.12,3.13,3.14), it turns out that the
number of e-folds from φself to the end of inflat ion at φend is again of order 103.

The required number of e-folds for relevant perturbat ions (NCOBE ∼ 50) deter-
mines the value of φCOBE,

|(φCOBE − φ−)(φCOBE − φ+ )|1/ 2 = 3h2φ0
NCOBE

= φ30
2n(n − 1)M 2

P
NCOBE

, (3.15)

11Note that in the limit α → 0, we recover the usual expression Eq. (2.13).
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Two Dynamical Possibilities

• Perturbations are Outside The Hubble Patch

t f (k)

t i
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t
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H
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t H
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Figure 1: Space-time diagram (sketch) showing the evolution of a fixed comoving scale in our
bouncing cosmology under the assumption that the bounce phase lies entirely within the Hagedorn
phase. The vertical axis is time, the horizontal axis is comoving distance. The bounce time is
chosen to be t = 0. The Hagedorn phase corresponds to the time interval −tH < t < tH , the
bounce phase is the interval −tB < t < tB. Outside of the bounce phase, the Hubble radius evolves
as in a radiation phase of standard cosmology The black solid curve represents the Hubble radius
H−1. The red vertical line labelled by k depicts a fixed comoving scale. This scale is smaller than
the Hubble radius in the central region of the bounce, exits the Hubble radius at the time ti(k),
and re-enters at a late time tf (k).

The crucial point of the mechanism of [2] is the following: provided that our three

large spatial dimensions are compact, the heat capacity CV of a gas of strings in thermal

equilibrium scales as r2 with the radius of the box. The heat capacity determines the root

mean square mass fluctuations via

〈(δM)2〉 = T 2CV , (3.1)

which then in turn induce metric perturbations. In longitudinal gauge (see e.g. [30, 31]

for reviews of the theory of cosmological perturbations), and in the absence of anisotropic

matter stress at late times, the metric takes the form

ds2 = −(1 + 2Φ)dt2 + a(t)2(1 − 2Φ)dx2 , (3.2)

where t is physical time, x are the comoving spatial coordinates of the three large spatial

dimensions, a(t) is the cosmological scale factor and Φ(x, t) represents the fluctuation

mode. On scales smaller than the Hubble radius, the metric fluctuations are driven by the

matter fluctuations, on super-Hubble scales it is the metric fluctuations which are dominant

since the matter oscillations have frozen out (thermal fluctuations cannot keep up with the

Hubble expansion). Thus, to compute the late-time spectrum of metric fluctuations, the

philosophy adopted in [2] (see also [32] for a corresponding treatment of fluctuations in

inflationary cosmology and [33] for a discussion on the spectrum of thermal fluctuations

corresponding to ordinary particles) is, for inhomogeneities on a fixed comoving scale, to

follow the matter fluctuations until the scale exits the Hubble radius at time ti(k), and to
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Fig. 1. Space-time diagram (sketch) showing the evolution of scales in inflationary cosmology. The vertical
axis is time, and the period of inflation lasts between ti and tR, and is followed by the radiation-dominated
phase of standard big bang cosmology. During exponential inflation, the Hubble radius H−1 is constant
in physical spatial coordinates (the horizontal axis), whereas it increases linearly in time after tR. The
physical length corresponding to a fixed comoving length scale labelled by its wavenumber k increases
exponentially during inflation but increases less fast than the Hubble radius (namely as t1/2), after
inflation.

towards exploring this “trans-Planckian window of opportunity”.

A third problem is the singularity problem. It was known for a long time that standard Big

Bang cosmology cannot be the complete story of the early universe because of the initial singularity, a
singularity which is unavoidable when basing cosmology on Einstein’s field equations in the presence of

a matter source obeying the weak energy conditions (see e.g. [11] for a textbook discussion). Recently,

the singularity theorems have been generalized to apply to Einstein gravity coupled to scalar field

matter, i.e. to scalar field-driven inflationary cosmology [12]. It is shown that in this context, a

past singularity at some point in space is unavoidable. Thus we know, from the outset, that scalar

field-driven inflation cannot be the ultimate theory of the very early universe.
The Achilles heel of scalar field-driven inflationary cosmology is, however, the cosmological

constant problem. We know from observations that the large quantum vacuum energy of field theories

does not gravitate today. However, to obtain a period of inflation one is using the part of the energy-

momentum tensor of the scalar field which looks like the vacuum energy. In the absence of a convincing

solution of the cosmological constant problem it is unclear whether scalar field-driven inflation is

robust, i.e. whether the mechanism which renders the quantum vacuum energy gravitationally inert
today will not also prevent the vacuum energy from gravitating during the period of slow-rolling of the

inflaton field. Note that the approach to addressing the cosmological constant problem making use

of the gravitational back-reaction of long range fluctuations (see [13] for a summary of this approach)

does not prevent a long period of inflation in the early universe.

Finally, a key challenge for inflationary cosmology is to find a well-motivated candidate for the

scalar field which drives inflation, the inflaton. Ever since the failure of the model of old inflation
[1, 2], it is clear that physics beyond the Standard Model of particle physics must be invoked.

It is likely that string theory will provide ideas which allow us to successfully address some

of the abovementioned problems of the current versions of inflationary cosmology. Foremost, since

one of its goals is to resolve space-time singularities, string theory has a good chance of providing

a nonsingular cosmology (and string gas cosmology, the scenario explored below, indeed has the

Bouncing Cosmology Inflation
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