Advances in Spinor Vector duality in Calabi Yau compactifications

Martín Hurtado Heredia
Supervisor: Alon Faraggi
Joint work w/ Stefan Groot Nibbelink
based in 2103.14684, 2103.13442, 21xx.xxxxx

22nd June 2021

Index

(1) Introduction/reminder of SVD
(2) 6D: Anommaly cancellation constrains SVD models
(3) 5D: An Orbifold-inspired SVD example
(4) 4D: Advances in $\operatorname{Res}\left(\frac{T^{6}}{\mathbb{Z}_{2} \times \mathbb{Z}_{2}}\right)$

Motivation/Reminder of Spinor Vector Duality

- The fermionic realization of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ orbifolds led to the observation of spinor-vector duality: two models are mapped to each other under the exchange of the total number of spinorial plus anti-spinorial representations and the total number of vectorial representations of an underlying $S O(2 N)$ GUT symmetry group.
- This duality was proven to arise due to exchange of discrete generalised GSO phases in the free fermionic formulation
- In a bosonic representation of the spinor-vector duality the map between the dual vacua results from an exchange of a generalized discrete torsion on \mathbb{Z}_{2} toroidal orbifolds.
- The idea is to explore the existence of similar symmetries in compactifications of heterotic string theory on smooth Calabi-Yau manifolds with vector bundles.

Constraint on SpinorVector Dualities in Six Dimensions

Main result

Any six dimensional $\mathcal{N}=1$ supersymmetric effective field theory with the numbers of vectors N_{V} and of spinors N_{S} (of either chirality) of some $S O(2 N)$ gauge group are constrained by an anomaly condition to

$$
N_{V}=2^{N-5} N_{S}+2 N-8
$$

for $N \geq 3$.
To derive this equation recall that gauge and gravitational anomalies in 6D are dictated by anomaly polynomials I_{8} eight-forms For charged fermions the anomaly polynomial takes the form:

$$
I_{8 \mid R}=\left.\widehat{A}\left(R_{2}\right) \operatorname{ch}_{R}\left(F_{2}\right)\right|_{8}
$$

with

$$
\operatorname{ch}_{R}\left(F_{2}\right)=\operatorname{tr}_{R}\left[e^{i \frac{F_{2}}{2 \pi}}\right]
$$

Constraint on SpinorVector Dualities in Six Dimensions

There are three different contributions:

- N_{V} Hyper multiplets in the vector representation:

$$
I_{8 \mid V} \supset N_{V} \frac{1}{4!} \operatorname{tr} v\left(i \frac{F_{2}}{2 \pi}\right)^{4}
$$

- Gauge multiplet in the adjoint representation:

$$
I_{8 \mid A d} \supset-\frac{1}{4!}\left[(2 N-8) \operatorname{tr} V\left(i \frac{F_{2}}{2 \pi}\right)^{4}+3\left(\operatorname{tr} V\left(i \frac{F_{2}}{2 \pi}\right)^{2}\right)^{2}\right] \supset-(2 N-8) \frac{1}{4!} \operatorname{tr} V\left(i \frac{F_{2}}{2 \pi}\right)^{4}
$$

- N_{S} Hyper multiplets in the (conjugage) spinor representation:

$$
I_{8 \mid S} \supset N_{S} \frac{1}{4!} 2^{N-5}\left[-\operatorname{tr}_{V}\left(i \frac{F_{2}}{2 \pi}\right)^{4}+\frac{3}{4}\left(\operatorname{tr}_{V}\left(i \frac{F_{2}}{2 \pi}\right)^{2}\right)^{2}\right] \supset-2^{N-5} N_{S} \frac{1}{4!} \operatorname{tr}_{V}\left(i \frac{F_{2}}{2 \pi}\right)^{4}
$$

Constraints on Spinor Vector Dualities in Six Dimensions

Four free fermionic T^{4} / \mathbb{Z}_{2} orbifold models

$$
B=\left\{v_{1}, v_{2}, \ldots, v_{5}\right\}
$$

of $N_{B}=5$ basis vectors defined as:

$$
\begin{aligned}
& v_{1}=1=\left\{\psi^{1, \ldots, 4}, \chi^{3, \ldots, 6}, y^{3, \ldots, 6}, \omega^{3, \ldots, 6} \mid \bar{y}^{3, \ldots, 6}, \bar{\omega}^{3, \ldots, 6} ; \bar{\psi}^{1, \ldots, 6}, \bar{\eta}^{2,3}, \bar{\phi}^{1, \ldots, 8}\right\} \\
& v_{2}=S=\left\{\psi^{1, \ldots, 4}, \chi^{3, \ldots, 6}\right\} \\
& v_{3}=z_{1}=\left\{\bar{\psi}^{1, \ldots, 6}, \bar{\eta}^{2,3}\right\} \\
& v_{4}=z_{2}=\left\{\bar{\phi}^{1, \ldots, 8}\right\} \\
& v_{5}=b_{1}=\left\{\psi^{1, \ldots, 4}, y^{3, \ldots, 6} \mid \bar{y}^{3, \ldots, 6} ; \bar{\psi}^{1, \ldots, 6}\right\}
\end{aligned}
$$

$$
c\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\begin{aligned}
& \beta \mid \alpha \\
& \beta
\end{aligned} \begin{aligned}
& 1 \\
& \\
& z_{1} \\
& z_{2} \\
& \\
& b_{1}
\end{aligned}\left(\begin{array}{rrrrr}
-1 & 1 & z_{1} & z_{2} & b_{1} \\
1 & 1 & -1 & -1 & -1 \\
-1 & -1 & 1 & \pm 1 & -1 \\
-1 & -1 & \pm 1 & 1 & \pm 1 \\
-1 & -1 & 1 & \pm 1 & -1
\end{array}\right) .
$$

Constraints on Spinor Vector Dualities in Six Dimensions

Four free fermionic T^{4} / \mathbb{Z}_{2} orbifold models

$\left(c\left[\begin{array}{l}z_{1} \\ z_{2}\end{array}\right], c\left[\begin{array}{l}b_{1} \\ z_{2}\end{array}\right]\right)$	$(+1,+1)$	$(+1,-1)$	$(-1,+1)$	$(-1,-1)$
Gauge Symmetry	$\begin{gathered} S O(4) \times S O(4) \times \\ E_{7} \times S U(2) \times S O(16) \end{gathered}$	$\begin{gathered} S O(4) \times S O(4) \times \\ E_{7} \times S U(2) \times E_{8} \end{gathered}$	$\begin{gathered} S O(4) \times S O(4) \times \\ S O(12) \times S O(4) \times S O(16) \end{gathered}$	$\begin{gathered} S O(4) \times S O(4) \times \\ S O(12) \times S O(4) \times S O(16) \end{gathered}$
Sector	Hyper Multiplet Representations			
S	$(4,4,1,1,1)$	(4,4, 1, 1, 1)	$\begin{gathered} (4,4,1,1,1) \\ (1,1,12,4,1) \\ \hline \end{gathered}$	$\begin{gathered} (4,4,1,1,1) \\ (1,1,12,4,1) \end{gathered}$
$S \oplus\left(S+z_{1}\right)$	(1,1,56,2,1)	(1,1,56,2, 1)		
$S+z_{2}$	(1, 1, 1, 1, 128)			
b_{1}				$\begin{aligned} & \left(2_{L}, 1,32,1,1\right) \\ & \left(2_{R}, 1,32,1,1\right) \end{aligned}$
$b_{1} \oplus\left(b_{1}+z_{1}\right)$		$\begin{aligned} & \left(2_{L}, 1,56,1,1\right) \\ & \left(2_{R}, 1,56,1,1\right) \end{aligned}$		
$b_{1}+z_{1}$	$\begin{aligned} & \left(2_{L}, 1,1,2_{L}, 16\right) \\ & \left(2_{R}, 1,1,2_{L}, 16\right) \end{aligned}$	$\begin{aligned} & \left(2_{L}, 4,1,2,1\right) \\ & \left(2_{R}, 4,1,2,1\right) \\ & \hline \end{aligned}$	$\begin{gathered} \left(2_{L}, 1,12,2,1\right) \\ \left(2_{R}, 1,12,2,1\right) \\ \left(2_{L}, 4,1,2,1\right) \\ \left(2_{R}, 4,1,2,1\right) \end{gathered}$	$\begin{aligned} & \left(2_{L,}, 1,1,2_{L}, 16\right) \\ & \left(2_{R}, 1,1,2_{L}, 16\right) \end{aligned}$
$b_{1}+e$			$\begin{aligned} & \left(1,2_{L}, \overline{32}, 1,1\right) \\ & \left(1,2_{R}, \overline{32}, 1,1\right) \end{aligned}$	
$\begin{gathered} \left(b_{1}+c\right) \oplus \\ \left(b_{1}+c+z_{1}\right) \end{gathered}$		$\begin{aligned} & \left(1,2_{L}, 56,1,1\right) \\ & \left(1,2_{R}, 56,1,1\right) \end{aligned}$		
$b_{1}+c+z_{1}$	$\begin{aligned} & \left(1,2_{L}, 1,2_{L}, 16\right) \\ & \left(1,2_{R}, 1,2_{L}, 16\right) \end{aligned}$	$\begin{aligned} & \left(4,2_{L}, 1,2,1\right) \\ & \left(4,2_{R}, 1,2,1\right) \end{aligned}$	$\begin{aligned} & \left(1,2_{L}, 1,2_{R}, 16\right) \\ & \left(1,2_{R}, 1,2_{R}, 16\right) \end{aligned}$	$\begin{aligned} & \left(1,2_{L}, 12,2_{L}, 1\right) \\ & \left(1,2_{R}, 12,2_{L}, 1\right) \\ & \left(4,2_{L}, 1,2_{R}, 1\right) \\ & \left(4,2_{R}, 1,2_{R}, 1\right) \end{aligned}$
$\begin{gathered} S O(12) \\ N_{V}=2 N_{S}+4 \end{gathered}$	Self-dual by E_{7} enhancement	Self-dual by E_{7} enhancement	$\begin{gathered} N_{V}=12 \\ N_{S}=4 \end{gathered}$	$\begin{gathered} N_{V}=12 \\ N_{S}=4 \end{gathered}$
$\begin{gathered} S O(16) \\ N_{V}=8 N_{S}+8 \end{gathered}$	$\begin{gathered} N_{V}=16 \\ N_{S}=1 \end{gathered}$		$\begin{aligned} & N_{V}=8 \\ & N_{S}=0 \end{aligned}$	$\begin{aligned} & N_{V}=8 \\ & N_{S}=0 \end{aligned}$

Constraints of Spinor Vector Duality in Six Dimensions

K3 Line Bundles

$$
\begin{gathered}
\frac{\mathcal{F}_{2}}{2 \pi}=D_{\alpha} \mathrm{H}_{\alpha}, \quad \mathrm{H}_{\alpha}=V_{\alpha}^{\prime} \mathrm{H}_{I} \\
\mathrm{~N}=-\int_{К 3}\left\{\frac{1}{2}\left(\frac{\mathcal{F}}{2 \pi}\right)^{2}-\frac{1}{24} \operatorname{tr}\left(\frac{\mathcal{R}}{2 \pi}\right)^{2}\right\}=\frac{1}{2} \kappa_{\alpha \beta} \mathrm{H}_{\alpha} \mathrm{H}_{\beta}-2
\end{gathered}
$$

Consider line bundle vectors such that the first E_{8} in the ten dimensional gauge group is generically broken to $S O(10)$:

$$
V_{\alpha}=\left(\vec{V}_{\alpha}\right)\left(\vec{V}_{\alpha}^{\prime}\right), \quad \vec{V}_{\alpha}=\left(V_{\alpha}^{1}, V_{\alpha}^{2}, V_{\alpha}^{3}, 0^{5}\right)
$$

$N_{V}=N_{(10)}^{1}+N_{(10)}^{2}+N_{(10)}^{3}=\frac{1}{2} \kappa_{\alpha \beta} \vec{V}_{\alpha} \cdot \vec{V}_{\beta}-6=c-6$

$$
N_{S}=N_{(16)}+N_{(16)}+N_{(16)}+N\left(\frac{3}{16)}=\frac{1}{2} \kappa_{\alpha \beta} \vec{V}_{\alpha} \cdot \vec{V}_{\beta}-8=c-8\right.
$$

Indeed, inserting these expressions in this condition leads to:

$$
N_{V}-2^{N-5} N_{S}=c-2 n-2^{N-5} 2^{n-3}(c-8)=8-2 n=2 N-8
$$

using that $n=8-N$.

Uncovering a Spinor Vector Duality in Five Dimensions

- We start with orbifold models discussed in $T^{4} / \mathbb{Z}_{2} \times S^{1}$ with a Wilson line on the additional circle.
- We then consider the resolution of this orbifold to a smooth $\mathrm{K} 3 \times S^{1}$ realisation and investigate how this effects the spinor-vector duality
- In the orbifold theory $e^{2 \pi i\left(v_{h}, P_{s h}-v_{h^{\prime}} \cdot P_{s h}+v_{h^{\prime}} \cdot(N-\bar{N})\right)} \cdot e^{2 \pi i \frac{1}{2}\left(v_{h^{\prime}} \cdot V_{h}-v_{h^{\prime}} \cdot v_{h}\right) \stackrel{!}{=} 1 \text { which }}$ implies

$$
W \cdot P_{s h} \equiv k:
$$

Or with discrete torsion
$e^{2 \pi i\left(v_{h^{\prime}} \cdot P_{\text {sh }}-v_{h^{\prime}} \cdot P_{\text {sh }}+v_{h^{\prime}} \cdot(N-\bar{N})\right)} \cdot e^{2 \pi i \frac{1}{2}\left(v_{h^{\prime}} \cdot v_{h}-v_{h^{\prime}}, v_{h}\right)} \cdot e^{2 \pi i \frac{1}{2}\left(k n^{\prime}-k^{\prime} n\right)!}=/=1$
$W \cdot P_{s h} \equiv \frac{1}{2} k$:

Uncovering a Spinor Vector Duality in Five Dimensions

Line Bundle Model with Vectorial Blowup Modes

$$
V_{\alpha}=\left(0^{2}, \frac{1^{6}}{2}\right)\left(0^{8}\right)
$$

for all $\alpha=1, \ldots, 16$.

$$
P_{\mathrm{sh}, \alpha}=V_{\alpha}=V+P, \quad V=\left(\frac{1^{2}}{2}, 0^{6}\right)\left(0^{8}\right) \quad \text { and } \quad P=\left(-\frac{1}{2}^{2}, \frac{1^{6}}{2}\right)\left(0^{8}\right)
$$

at all sixteen fixed points. They live on the (shifted) spinorial lattice of $S O(16)$ and part of the sixteen half-hyper multiplets $(1,56)(1)$. Switching on these blowup modes lead to the symmetry breaking:

$$
S U(2) \times E_{7} \times E_{8}^{\prime} \rightarrow S U(2) \times E_{6} \times E_{8}^{\prime}
$$

In this process precisely the roots $\pm\left(0^{2}, 1^{2}, 0^{4}\right)\left(0^{8}\right)$ and $\pm\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}^{5}\right)$ of the $(1,27)(1)$ are broken.

Uncovering a Spinor Vector Duality in Five Dimensions

Line Bundle Model with Vectorial Blowup Modes

$$
V_{\alpha}=\left(0^{2}, \frac{1^{6}}{2}\right)\left(0^{8}\right)
$$

for all $\alpha=1, \ldots, 16$.

$$
P_{\mathrm{sh}, \alpha}=V_{\alpha}=V+P, \quad V=\left(\frac{1}{2}^{2}, 0^{6}\right)\left(0^{8}\right) \quad \text { and } \quad P=\left(-\frac{1}{2}^{2}, \frac{1^{6}}{2}\right)\left(0^{8}\right)
$$

at all sixteen fixed points. They live on the (shifted) spinorial lattice of $S O(16)$ and part of the sixteen half-hyper multiplets $(1,56)(1)$. Switching on these blowup modes lead to the symmetry breaking:

$$
S U(2) \times E_{7} \times E_{8}^{\prime} \rightarrow S U(2) \times E_{6} \times E_{8}^{\prime}
$$

In this process precisely the roots $\pm\left(0^{2}, 1^{2}, 0^{4}\right)\left(0^{8}\right)$ and $\pm\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}^{5}\right)$ of the $(1,27)(1)$ are broken.

Uncovering a Spinor Vector Duality in Five Dimensions

Line Bundle Model with Vectorial Blowup Modes

The model is compactified further on a circle S^{1} with a discrete Wilson line:

$$
W=\left(0^{7}, 1\right)\left(0^{7}, 1\right)
$$

and the torsion phase (17) is switched off: $\epsilon=0$. The Wilson line projection condition on the resolution is assumed to take the form:

$$
W \cdot P \equiv 0
$$

where P are the weights listed in Table 2 . This directly follows from the orbifold Wilson line projection (14), since the difference between the $P_{\text {sh }}$ and P is at most given by V_{α}, but $W \cdot V_{\alpha}=0$. The gauge group therefore becomes:

$$
S U(2) \times S O(10) \times S O(16)^{\prime}
$$

and the 5 D spectrum:

$$
2(2,10)(1)+36(2,1)(1)+14(1,10)(1)+14(1,1)(1) .
$$

Uncovering a Spinor Vector Duality in Five Dimensions

Torsion Phase (ϵ)	Without $(\epsilon=0)$	With $(\epsilon=1)$
Orbifold		
Gauge Group	$S U(2)_{1} \times S U(2)_{2} \times S O(12) \times S O(16)^{\prime}$	$S U(2)_{1} \times S U(2)_{2} \times S O(12) \times S O(16)^{\prime}$
Spectrum	$(2,2,12)(1)+16 \frac{1}{2}(1,2,12)(1)$	$(2,2,12)(1)+16 \frac{1}{2}(1,1,32)(1)$
	$+32(2,1,1)(1)+4(1,1,1)(1)$	$+4(1,1,1)(1)$
Blowup		
Modes $P_{\text {sh, }, \alpha}=V_{\alpha}$	$\left(\frac{1}{2},-\frac{1}{2}, 1,0^{5}\right)\left(0^{8}\right)$	$\left(0^{2}, \frac{1}{2}^{6}\right)\left(0^{8}\right)$
Gauge Group	$S U(2) \times S O(10) \times S O(16)^{\prime}$	$S U(2)_{1} \times S U(2)_{2} \times S U(6) \times S O(16)^{\prime}$
Spectrum	$2(2,10)(1)+36(2,1)(1)$	$2(2,2,6)(1)+14(1,1,15)(1)$
	$+14(1,10)(1)+14(1,1)(1)$	

Figure: This table summarises how a spinor-vector duality is visible in orbifold and resolution models. Since the resolutions depend on the choice of blowup modes, their gauge groups and therefore their spectra make this duality less apparent.

$\operatorname{Res}\left(\frac{T^{6}}{\mathbb{Z}_{2} \times \mathbb{Z}_{2}}\right)$

This work can be seen as a continuation of 1007.0203.

Problem

Strong triangulation dependence: $64 \mathbb{C}^{3} / \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ singular points, with four different ways to resolve each one $\longrightarrow \frac{4^{64}}{3!4!!^{3}} \approx 4.10 \cdot 10^{33}$ different resolutions

Solution: Parameterizing Triangulations

The idea is to absorb the dependence on the triangulation in some functions s.t. we obtain expressions independent of any triangulation

- Define the following functions: $\delta_{\alpha \beta \gamma}^{T}= \begin{cases}1 & \text { if triangulation } T \text { is used, } \\ 0 & \text { if other triangulation is used, }\end{cases}$ of (α, β, γ) for the four possible triangulations dubbed $T=S, E_{1}, E_{2}$ and E_{3}.

$$
\Delta_{\alpha \beta \gamma}^{1}=-\delta_{\alpha \beta \gamma}^{E_{1}}+\delta_{\alpha \beta \gamma}^{E_{2}}+\delta_{\alpha \beta \gamma}^{E_{3}},
$$

- Define also the following Δ functions

$$
\begin{aligned}
& \Delta_{\alpha \beta \gamma}^{2}=\delta_{\alpha \beta \gamma}^{E_{1}}-\delta_{\alpha \beta \gamma}^{E_{2}}+\delta_{\alpha \beta \gamma}^{E_{3}}, \\
& \Delta_{\alpha \beta \gamma}^{3}=\delta_{\alpha \beta \gamma}^{E_{1}}+\delta_{\alpha \beta \gamma}^{E_{2}}-\delta_{\alpha \beta \gamma}^{E_{3}} .
\end{aligned}
$$

$\operatorname{Res}\left(\frac{T^{6}}{\mathbb{Z}_{2} \times \mathbb{Z}_{2}}\right)$

Solution: Parameterizing Triangulations

We also obtain:

Triangl.	$\delta_{\alpha \beta \gamma}^{E_{1}}$	$\delta_{\alpha \beta \gamma}^{E_{2}}$	$\delta_{\alpha \beta \gamma}^{E_{3}}$	$\delta_{\alpha \beta \gamma}^{S}$	$\Delta_{\alpha \beta \gamma}^{1}$	$\Delta_{\alpha \beta \gamma}^{2}$	$\Delta_{\alpha \beta \gamma}^{3}$	$1-\Delta_{\alpha \beta \gamma}^{1}$	$1-\Delta_{\alpha \beta}^{2}$
E_{1}	1	0	0	0	-1	1	1	2	0
E_{2}	0	1	0	0	1	-1	1	0	2
E_{3}	0	0	1	0	1	1	-1	0	0
S	0	0	0	1	0	0	0	1	1

It follows immediately that
$1-\Delta_{\alpha \beta \gamma}^{1}-\Delta_{\alpha \beta \gamma}^{2}-\Delta_{\alpha \beta \gamma}^{3}=\delta_{\alpha \beta \gamma}^{S}, \quad 1-\Delta_{\alpha \beta \gamma}^{i}=2 \delta_{\alpha \beta \gamma}^{E_{i}}+\delta_{\alpha \beta \gamma}^{S}$ and $\Delta_{\alpha \beta \gamma}^{2}+\Delta_{\alpha \beta \gamma}^{3}=2 \delta_{\alpha \beta \gamma}^{E_{1}}, \quad \Delta_{\alpha \beta \gamma}^{1}+\Delta_{\alpha \beta \gamma}^{3}=2 \delta_{\alpha \beta \gamma}^{E_{2}}, \quad \Delta_{\alpha \beta \gamma}^{1}+\Delta_{\alpha \beta \gamma}^{2}=2 \delta_{\alpha \beta \gamma}^{E_{3}}$

$\operatorname{Res}\left(\frac{T^{6}}{\mathbb{Z}_{2} \times \mathbb{Z}_{2}}\right)$

As a result we obtain some important results independent on the triangulation such as:

- Bianchi identities:

$$
\begin{gather*}
\sum_{\beta, \gamma} \mathcal{V}_{1, \beta \gamma}^{2}=24, \quad \sum_{\alpha, \gamma} \mathcal{V}_{2, \alpha \gamma}^{2}=24, \quad \sum_{\alpha, \beta} \mathcal{V}_{3, \alpha \beta}^{2}=24 \tag{1}\\
\sum_{\alpha}\left[-2+4 \Delta_{\alpha \beta \gamma}^{1}\right] \sum_{\beta}\left[-2+4 \Delta_{\alpha \beta \gamma}^{2}\right] \sum_{\gamma}\left[-2+4 \Delta_{\alpha \beta \gamma}^{3}\right] \tag{2}
\end{gather*}
$$

These can be further simplified to:

$$
\begin{align*}
& \mathcal{V}_{1, \beta \gamma} \cdot \mathcal{V}_{2, \alpha \gamma}=\mathcal{V}_{1, \beta \gamma} \cdot \mathcal{V}_{3, \alpha \beta}=\mathcal{V}_{2, \alpha \gamma} \cdot \mathcal{V}_{3, \alpha \beta}=\frac{1}{2}\left(\mathcal{V}_{1, \beta \gamma}^{2}+\mathcal{V}_{2, \alpha \gamma}^{2}+\mathcal{V}_{3, \alpha \beta}^{2}\right)-2 \tag{3}\\
& \sum_{\beta} \mathcal{V}_{1, \beta \gamma}^{2}=\sum_{\gamma} \mathcal{V}_{1, \beta \gamma}^{2}=6, \quad \sum_{\alpha} \mathcal{V}_{2, \alpha \gamma}^{2}=\sum_{\gamma} \mathcal{V}_{2, \alpha \gamma}^{2}=6, \quad \sum_{\alpha} \mathcal{V}_{3, \alpha \beta}^{2}=\sum_{\beta} \mathcal{V}_{3, \alpha \beta}^{2}=6 \tag{4}
\end{align*}
$$

$\operatorname{Res}\left(\frac{T^{6}}{\mathbb{Z}_{2} \times \mathbb{Z}_{2}}\right)$

- Multiplicity operator:

$$
\mathcal{V}_{a, \mu \nu}^{2}=\frac{3}{2} \quad \Rightarrow \quad \mathcal{V}_{a, \mu \nu} \cdot \mathcal{V}_{b, \rho \sigma}=\frac{1}{4}
$$

- Flux quantisation conditions:

$$
2 \mathcal{V}_{i, \mu \nu} \cong \sum_{\rho} \mathcal{V}_{i, \rho \nu} \cong \sum_{\rho} \mathcal{V}_{i, \mu \rho} \cong \mathcal{V}_{1, \beta \gamma}+\mathcal{V}_{2, \alpha \gamma}+\mathcal{V}_{3, \alpha \beta} \cong 0
$$

- Blowup modes without oscillators condition:

$$
\mathcal{V}_{a, \mu \nu}^{2}=\frac{3}{2} \quad \Rightarrow \quad \mathcal{V}_{a, \mu \nu} \cdot \mathcal{V}_{b, \rho \sigma}=\frac{1}{4}
$$

We also obtain other important quantities like

- Intersection numbers
- Volumes of all the curves divisors and full manifold
- Chern classes (Important consistency check):

$$
c_{3}=\frac{1}{4} \sum_{i, \alpha, \beta, \gamma}\left(1+\Delta_{\alpha \beta \gamma}^{i}\right)-\frac{1}{4} \sum_{i, \alpha, \beta, \gamma}\left(-1+\Delta_{\alpha \beta \gamma}^{i}\right)=96
$$

Note in particular that all the triangulation dependence in the form of the functions $\Delta_{\alpha \beta \gamma}^{i}$ drop out and the final result equals the known Euler number 96 .

Without Wilson lines

- Models with three bundle vectors
- $S O(10) \times S O(12)$ Line Bundle Models
- Blaszczyk's $S U(3) \times S U(2)$ Line Bundle Models
- A "swampland" $S O(10) \times S O(10)$ models

With one Wilson line

- Models with to Two Sets of Three Independent Line Bundles
- $T^{6} / \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ generalisation of the $T^{4} / \mathbb{Z}_{2} \times S^{1}$ model

