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Supersymmeteric extremal black holes typically have a near
horizon geometry of the form AdS2 × K , where K is a
compact space.

Quantum entropy function is a proposal which relates the
degeneracy dhor of a single centred black hole with the
partition function ZAdS2

of string theory on AdS2 × K . This
relation takes the form

dhor =

〈

exp

[

−iqi

∮

dθA
(i)
θ

]〉finite

AdS2

(1)

where <>AdS2
denotes unnormalized path integral weighted by

e−A, A is the euclidean action.
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This partion function suffers from infrared divergence because
of infinite volume of AdS2. But there is a unambiguous
procedure for extracting its finite part.

Consider AdS2 as a Poincare disk. Then metric has the form

ds2 = v(dη2 + sinh2 ηdθ2) (2)

We regularize the infinte volume by putting cut-off η = η0. Let L
be the length of the boundary. Then in the limit of large cut-off,
the partition function has the form

ZAdS2
= eCL+O(L−1) × ∆ (3)

where C and ∆ are independent of L. The finite part of the ZAdS2

is defined to be ∆ and is called ’quantum entropy function’.

Rajesh Kumar Gupta Quantum Entropy Function and Localization



Contents
Introduction

Symmetries of Euclidean AdS2 × S2

Localization of Path Integral
Example of H1-invariant Saddle Points

Summary

Since the results for microscopic degeneracy are known in most
cases, in order to compare with microscopic degeneracy formula
one need to take into account multicentred black holes by taking
appropriate product of single centred black hole degeneracy.

d(~q) =
∑

n

∑

{~qi},~qhair

n
∏

i=1

dhor (~qi ) dhair (~qhair ; {~qi}) (4)

Rajesh Kumar Gupta Quantum Entropy Function and Localization



Contents
Introduction

Symmetries of Euclidean AdS2 × S2

Localization of Path Integral
Example of H1-invariant Saddle Points

Summary

Consider an arbitrary quantum field theory with function
space M over which one wish to integrate.

Let F be a supergroup of symmetries generated by Q and a
compact U(1) generator X such that Q2 = X .

Suppose F acts freely on M. In that case one can form
quotient space M/F . A point in the space M/F corresponds
to an orbit of the elements of F . This orbit contains the point
and it’s images under the action of the supergroup F .

Rajesh Kumar Gupta Quantum Entropy Function and Localization



Contents
Introduction

Symmetries of Euclidean AdS2 × S2

Localization of Path Integral
Example of H1-invariant Saddle Points

Summary

Thus by integrating first over orbit, one can reduce the
integral to an integral over M/F . The integral over orbit is
simple and gives a factor of vol(F ).

∫

M

e−L
O = vol(F )

∫

M/F

e−L
O (5)

Since the integration over the bosonic parameter gives a finite
result, the volume of the group F is zero.

vol(F ) =

∫

dxdθ = 0 (6)
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In general the group F does not act freely and has fixed point
locus M0.

Let C be an arbitrary neighborhood of M0 and let M ′ be it’s
complement.Then the path integral restricted to M ′ vanishes
and the enitre contribution come from the integration over C .

Since the neighborhood C is arbitrary, the integral in this
sense is said to be localised on M0.

The integral is given by the intgration over M0 weighted by
the one loop determinant of the transeverse degree of
freedom.

Rajesh Kumar Gupta Quantum Entropy Function and Localization



Contents
Introduction

Symmetries of Euclidean AdS2 × S2

Localization of Path Integral
Example of H1-invariant Saddle Points

Summary

Motivation:
Our motivation of the work is to understand the quantum entropy
function by explicitly doing the path integral.

For this we want a method for systematically calculating the
contribution of α′ and quantum corrections to entropy of extremal
black.

Since the degeneracy formula for BPS black hole is known, this
would give a consistency check of this formula.
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Results:

1 The global symmetry group of AdS2 × S2 is SU(1, 1|2). It is
possible to construct supergroup H1 which is an analogue of
F . This supergroup is generated by supercharge Q1 and
compact bosonic generator (L̂0 − J3).

Q2
1 = 4(L̂0 − J3), [Q1, L̂0 − J3] = 0 (7)

2 Using the arguements of localization, we will show that the
path integral can receives non-vanishing contribution only
from integration around H1 invariant field configurations.

3 We will show the explicit construction of a class of H1

invariant saddle points.
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In four space time dimension supersymmetry requires the
black holes to be spherically symmetric and hence the near
horizon geometry has an AdS2×S2 factor.

In known examples like 1
4 BPS black holes in N = 4

supersymmetric theories, 1
2 BPS black holes in N = 2

supersymmetric theories, the near horizon isometry group
SL(2,R) × SO(3) gets enhanced to the SU(1, 1|2)
supergroup.
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The generators of the supergroup SU(1, 1|2) satisfy the following
algebra

[Lm,Ln] = i(m − n)Lm+n,

[J3, J±] = ±J±, [J+, J−] = 2J3

[Ln,G
α±
r ] = i(

n

2
− r)Gα±

r+n

[J3,Gα±
r ] = ±

1

2
Gα±

r , [J±,Gα∓
r ] = Gα±

r (8)

{G+α
r ,G−β

s } = 2ǫαβLr+s − 2i(r − s)(ǫσi )βαJ i ,

ǫ+− = −ǫ−+ = 1, ǫ++ = ǫ−− = 0, m, n = 0,±1, r , s = ±
1

2
,

α, β = ±
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Here Ln denote the virasoro generator acting on the upper half
plane labelled by the coordinate u and is given as

Ln = −iun+1∂u − i ūn+1∂ū (9)

With this generator, the elements of group SL(2,R) is of the form
exp(isnLn) with real sn.
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However we will work in a coordinate w which represent AdS2 as a
disk and this is related to upper half plane coordinate u via

w =
1 + iu

1 − iu
(10)

The metric of AdS2 is

ds2 = 4v
dwdw̄

(1 − ww̄)2
(11)

In this coordinate the virasoro generator takes the form

Ln =
i

2
[in(1 + w)1−n(1 − w)1+n∂w + c .c .] (12)
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We now define

L̂0 =
1

2
(L1+L−1), L̂± = L0±

i

2
(L1−L−1), Ĝαβ

± = Gαβ
1/2∓iGαβ

−1/2

(13)
In the disk coordinate

L̂0 = (w∂w −w̄∂w̄ ), L̂+ = −i(w2∂w −∂w̄ ), L̂− = i(∂w −w̄2∂w̄ )
(14)

In this coordinate L̂0 has a interpretation of generator of rotation
about the origin in the w -plane.
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An element of the form

exp[i(ζ0L̂0 + ζ+L̂+ + ζ−L̂− + η3J
3 + η+J+ + η−J−)] (15)

will be an element of SL(2,R) × SU(2) if

(ζ0)∗ = ζ0, (ζ±)∗ = ζ∓, (η3)
∗ = η3 , (η±)∗ = η∓ (16)

Similarly we get the following reality conditon on the grassman
parameters

(θγ
αβ)∗ = ǫαα′

ǫββ′

θ−γ
α′β′ (17)

This conditon is achieved by requiring that if exp(iT1) and
exp(iT2) are elements of SU(1, 1|2) then exp([T1,T2]) must also
be an element of the group.
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We define

Q1 = Ĝ++
+ + Ĝ−−

− , Q2 = −i(Ĝ++
+ − Ĝ−−

− ) (18)

Q3 = −i(Ĝ−+
+ + Ĝ+−

− ), Q4 = Ĝ−+
+ − Ĝ+−

−

In that case we have

{Qi ,Qj} = 8δij(L̂0 − J3), (19)

[L̂0 − J3,Qi ] = 0, (20)

Subgroup of SU(1, 1|2) generated by above subalgebra is denoted
as H0.
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Another subgroup of SU(1, 1|2) which will be relevant is H1

generated by Q1 and (L̂0 − J3).

Also the general element g ∈ SU(1, 1|2) is

g =exp[i{ζ̄L̂+ + ζL̂− + η̄J+ + ηJ− + θα+Ĝα+
− + θα−Ĝα−

+ }]

× exp[iσ(L̂0 + J3)] × exp[i{

4
∑

k=1

χkQk + σ̃(L̂0 − J3)}]
(21)
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In order to carry out the path integral over infinite no. of
modes, we will first fix the order of integration.

We will adopt the following definition of path integral:
1 First we will integrate over the orbits of the subgroup H1

generated by Q1 and (L̂0 − J3),
2 then carry out the integration over the remaining variables in

some order.

We will implicitly assume that the theory admits a formalism
in which the H1 subalgebra generated by Q1 and (L̂0 − J3) is
realised offshell.
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The division of path integral into the orbits of H1 and direction
transeverse to these can be done by using Fadeev-Popov method.
We express the elements of the subgroup H1 by

h = exp(iαQ1 + iβ(L̂0 − J3)) (22)

Then the path integral can be expressed as

[
∫

dh

]

[

∫

e−A

(

∏

a

δ(F a)

)

sdet
δF a

~τ

∂τb

∣

∣

∣

∣

~τ=0

]

(23)

where F a are a pair of “gauge fixing functionals”, ~τ collectively
denotes the transformation parameter (α, β) and F a

~τ is the
transform of F a by parameter ~τ .

Rajesh Kumar Gupta Quantum Entropy Function and Localization



Contents
Introduction

Symmetries of Euclidean AdS2 × S2

Localization of Path Integral
Example of H1-invariant Saddle Points

Summary

The integration over H1 has a compact bosonic direction β
corresponding to U(1) and a fermionic direction α. Hence the
whole integral vanishes.

If the field configuration φ is invariant under only (L̂0 − J3)

then the matrix
δF a

~τ

∂τb has zero eigen value along the bosonic
direction. This makes the superdeterminant vanishes.

Thus the configuration φ must be invariant under both Q1

and (L̂0 − J3).
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We choose the coordinates of the field configuration measuring the
fluctuations about the field φ as follows.

1 By Fourier decomposing these fluctuation in (θ − φ)
coordinate, we can choose them to be eigen functions of
(L̂0 − J3) with eigen value m. e.g. For scalar field a
deformation of the form e im(θ−φ)/2f (θ + φ, r , ψ) will have this
property.

2 we parametrize all such bosonic fluctuation by z s
m for m

positive and z s∗
m for m negative. Here s runs for different

value and z s
m form a complete set bosonic fluctuations with

eigen value m.

3 Since Q2
1 = 4(L̂0 − J3), the action of Q1 on z s

m for m 6= 0 can
not vanish.This action will generate particular fermionic
deformation with eigen value m.
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Q1z
s
m = ζs

m (L̂0 − J3)ζs
m = mζs

m (24)

Q1ζ
s
m = 4mz s

m (25)

Similarly for the complex conjugate deformations, the following
relations hold

Q1z
s∗
m = ζs∗

m , Q1ζ
s∗
m = −4mz s∗

m , m > 0 (26)

ζs
m and ζs∗

m parametrize the complete set of fermionic deformations
with (L̂0 − J3) eigen values m and −m respectively.
We shall call the m = 0 bosonic and fermionic modes collectively
as ~y
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Now the path integral, around the field φ, over the various fields
can be regarded as integral over the parameters z s

m, z
s∗
m , ζ

s
m, ζ

s∗
m for

m 6= 0 together with integration over ~y .

I =

∫

d~y
∏

m>0,s

dz s
mdz s∗

m dζs
mdζs∗

m I e−A (27)

Where I represents any measure factor which might arise from
changing the integration variables to (~y ,~z, ~z∗, ~ζ, ~ζ∗).
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Now we define

I (t) =

∫

d~y
∏

m>0,s

dz s
mdz s∗

m dζs
mdζs∗

m I e−A−tQ1F (28)

where t is a real positive parameter and A is the euclidean action
satisfying

Q1A = 0 (29)

Here F is
F =

∑

m>0

∑

s

z s∗
m z s

m (30)

This gives

Q1F =
∑

m>0

∑

s

[4mz s∗
m z s

m + ζs
mζ

s∗
m ] (31)

Also
Q2

1F = 0 (32)
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∂t I (t) =

∫

d~y
∏

m>0,s

dz s
mdz s∗

m dζs
mdζs∗

m I (−Q1F )e−A−tQ1F (33)

∂t I (t) = −

∫

d~y
∏

m>0,s

dz s
mdz s∗

m dζs
mdζs∗

m I Q1(Fe−A−tQ1F ) = 0

(34)
Where we have used the Q1 invariance of the measure.
Thus I (t) is independent of t and has the same value in the limits
t → 0+ and t → ∞. Thus

I = lim
t→∞

∫

d~y
∏

m>0,s

dz s
mdz s∗

m dζs
mdζs∗

m I e−A−t
P

m>0

P

s [4mz s
mz s∗

m +ζs
mζs∗

m ]

(35)
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Thus upto an overall t independent normalization constants, the
e−tΣm>0Σs [4mz s

mz s∗
m +ζs

mζs∗
m ] term on the t → ∞ limit is equivalent to

inserting in the path integral a factor

∏

m>0

∏

s

δ(z s
m)δ(z s∗

m )δ(ζs
m)δ(ζs∗

m ) (36)

This shows that the path integral is localized in the subspace of
(L̂0 − J3) invariant deformations parametrised by the coordinates ~y
and the inegral becomes

I =

∫

d~yI
′(~y)e−A(~y ) (37)
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We can further localize the ~y integral onto Q1 invariant subspace.
Let (~wα, ζa) are the bosonic and fermionic componets of ~y . Then

Q1ζ
a = f a(~wα, ~ζ) (38)

for some functions f a. We now insert into the path integral a term

exp[−tQ1

∑

a

ζaf a(~w , ~ζ)] = exp[−t
∑

a

f a(~w , ~ζ)f a(~w , ~ζ)] (39)

Further using nilpotency of Q1 and Q1 invariance of the original
action, it can be shown that the path integral is independent of t.
In the t → ∞, the integral is localised in the bosonic sector onto
Q1 invariant subspace f a(~w , 0) = 0.
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Result: We have established that nonvanishing contribution to
path integral can come from integration around the H1 invariant
field φ. The integral is given as integration over H1 invariant slice
passing through the field configuration φ and is given by

I =

∫

d ~y ′Ĩ
′(~y ′)e−A(~y ′) (40)

where
Q1~y

′ = 0, (L̂0 − J3)~y ′ = 0 (41)
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We consider type IIB string theory on K3 and consider six
dimensional geometries which are asymptotic to
S1 × S̃1×AdS2×S2 with background 3-form fluxes. The simplest
H1-invariant saddle point is

ds2 = v(dη2 +sinh2 ηdθ2)+u(dψ2 +sin2 ψdφ2)+
R

τ2
|dx4 + τdx5|2

G I =
1

8π2
[QI sinψdx5 ∧ dψ ∧ dφ+ PI sinψdx4 ∧ dψ ∧ dφ+ dual ]

V i
I = constant, V r

I = constant (42)

1 ≤ I ≤ 26, 1 ≤ i ≤ 5, 6 ≤ r ≤ 26

This background is invariant under full SU(1, 1|2) symmetry group.
By taking orbifold of this background by discrete group Zs , one
can construct other H1 invariant saddle point.
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Since the subgroup H1 contains both Q1 and Q2
1 , the

generator of Zs must commute with Q1.

The only bosonic generator which commute with Q1 is
(L̂0 − J3).

The orbifold of the background is given by the Zs

transformation

(θ, φ, x5) → (θ +
2π

s
, φ−

2π

s
, x5 +

2πk

s
) (43)

k, s ∈ Z gcd(s, k) = 1

Since (L̂0 − J3) shifts θ and φ in the opposite direction, the
above transformation is generated by (L̂0 − J3) together with
shifts along x5.
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After taking the orbifold

ds2 =v(dη2 + sinh2 η

(

1 +
(1 − s−2)e−η

2 sinh η

)2

dθ2)

+ u(dψ2 + sin2 ψ(dφ+ dθ − s−1dθ)2)

+
R

τ2
|dx4 + τ(dx5 + ks−1dθ)|2

G I =
1

8π2
[QI sinψ(dx5 + ks−1dθ) ∧ dψ ∧ (dφ+ dθ − s−1dθ)

+ PI sinψdx4 ∧ dψ ∧ (dφ+ dθ − s−1dθ) + dual ]

(44)

(θ, φ, x5) ≡ (θ + 2π, φ, x5) ≡ (θ, φ+ 2π, x5) ≡ (θ, φ, x5 + 2π)

For large η, this has the same asymptotic behaviour as the
S1 × S̃1×AdS2×S2 background.
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Quantum entropy function gives a prescription for computing
the degeneracy of the black hole interms of path integral over
string fields on the near horizon geometry of extremal black
hole.

Using the global symmetry group SU(1, 1|2), we have shown
that there exist a subgroup H1 generated by fermionic
generator Q1 and bosonic compact generator (L̂0 − J3) such
that Q2

1 = 4(L̂0 − J3).

Using the subgroup H1, we have shown the path integral can
receives nonvanishing contribution only from integration
around field configuration φ which are invariant atleast under
Q1 and (L̂0 − J3).
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We have shown that the path integral about each
H1-invariant φ can be expressed as integral over H1-invariant
slice passing through φ.

We have also shown the construction of a class H1-invariant
saddle points from freely orbifolds of near horizon geometry of
the black hole.
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