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Motivation

Use in superstring theory.

Superstrings conjectured to exist in 10d: M4 × CY3. i.e. 4d Minkowski that we are aware
of plus an additional 6 compact dimensions (CY3 is 3 cx dims or 6 real dims).

Compactification of extra dimensions on CY mfolds is popular as it leaves some of the
original SUSY unbroken (specifically, 21−n of the original SUSY is unbroken if we
compactify on a CY mfold with holonomy group SU(n)).1

Several other motivations for studying these: F-theory compactifications on CY 4-folds
allow you to find many classical solutions in the string theory landscape2.

First attempts at obtaining standard model from string theory used the now “standard”
compactification of E8 × E8 heterotic string theory. In such compactifications, #
generations = 1

2
|χ| where χ is Euler characteristic. ∴ for 3 generation model, want

χ = ±6. Return to this later3.

1
Want some SUSY to get broken at low energy since we don’t observe it but we do want N = 1 SUSY to remain

unbroken at low energies as we need it to solve problems e.g. mass of scalars etc (this is the reason we consider SUSY to begin
with). However, we want all others to be broken at low energies since they’re not realistic e.g. N = 2 is not chiral. At high
energies, these extra SUSYs (if they exist) could be unbroken and present.

2
See Will for details.

3
Return to in Hodge Diamond discussion.
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Aims of Talk

Complex Manifolds

Kähler Manifolds

Homology and Cohomology

Chern Classes

CY Mfolds
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Complex Mfolds (1)

We review the two possible constructions of complex mfolds and then give
the decomposition of the complexified tangent and cotangent bundles, that
in turn, allows us to define (p, q) forms on M that will be useful later on.
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Complex Mfolds (2): Construction (a)

M is differentiable mfold covered by open sets
{Ua}a∈A
Each Ua has a corresponding coordinate map
za : Ua → Cn to an open subset of Cn

On non-trivial intersections Ua ∩ Ub 6= ∅, the
transition functions
za · zb−1 : zb(Ua ∩ Ub)→ za(Ua ∩ Ub) are
holomorphic (c.f. smooth for a smooth real
mfold).

Essentially, holomorphic transition fns ⇒ cx
mfold.
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Complex Mfolds (3): Construction (a)

So a cx mfold will look, at least locally, like Cn ' R2n.

Construction (a) makes it clear that any cx mfold is also a real mfold
(can be made explicit by expanding the n cx coordinates in terms of
real and imaginary parts [2n coords]).

However, converse not all true i.e. not all real mfolds are cx mfolds.

Becomes apparent when consider Construction (b).

D. Errington UoL Slide 5 / 55



Complex Mfolds (4): Construction (b)

Preliminaries:

Let M be a real n-fold with tangent and cotangent
bundles TM and T ∗M resp.

Recall that a fiber bundle consists of the data
(E ,B, p,F ) where the bundle projection p : E → B.
We require that for every open U ⊂ B, p−1(U) ⊂ E
is homeomorphic to U × F such that the natural
projection on the first factor returns U i.e. we get
the standard commuting triangle.

A section of a bundle is a continuous map
s : B → E defined s.t. ∀x ∈ B, p(s(x)) = x .

e.g. if E is a vector bundle, a section of E is an
element of the vector space Ex lying above each
x ∈ B i.e. it picks out a particular vector.

D. Errington UoL Slide 6 / 55



Complex Mfolds (5): Construction (b)

Sections of TM (resp T ∗M) are tangent vector fields and covector
fields resp.

Sections of the tensor product bundle ⊗kTM ⊗l T ∗M are tensor
fields of type (k , l).

The space of type (k , l) tensor fields is denoted Γ(⊗kTM ⊗l T ∗M).
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Complex Mfolds (6): Construction (b)

Let M be real 2n-fold. Define the almost complex structure
J ∈ Γ(TM ⊗ T ∗M) which satisfies Ja

bJb
c = −δac .

For any v ∈ Γ(TM), J2v = −v ⇒ J is a generalisation of
multiplication by ±i

J gives the structure of a complex vec. space to each Tp(M)∀p ∈ M

(M, J) is called an almost complex 2n-fold.
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Complex Mfolds (7): Construction (b)

Define the Nijenhuis tensor N ∈ Γ(TM ⊗2 T ∗M) by its action on
v ,w ∈ Γ(TM) by
N(v ,w) = −J2[v ,w ] + J[Jv ,w ] + J[v , Jw ]− [Jv , Jw ]

If (M, J) is an almost cx 2n-fold with N = 0 then J is called a cx
structure and M a cx n-fold.

Two constructions are equivalent since holomorphic transition
functions ⇔ J integrable ⇔ N = 0 ⇔ J complex structure.

It is this condition of integrability of J being satisfied, that allows M
to be covered by cx coordinates.
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Complex Mfolds (8): Bundle Decomposition

Take a cx n-fold (M, J) (J cx structure).

Jp : Tp(M)→ Tp(M) is an endomorphism of tangent spaces.

If we complexify the tangent spaces Tp(M) 7→ Tp(M)⊗ C then Jp extends
naturally to Jp : Tp(M)⊗ C→ Tp(M)⊗ C.

Since J2 = −I, the evalues of J in Tp(M)⊗ C are ±i
⇒ ∃ 2 espaces of J with evalues ±i (denoted T 1,0

p (M),T 0,1
p (M) resp).

⇒ Tp(M)⊗ C = T 1,0
p (M)⊕ T 0,1

p (M) where T 1,0
p (M),T 0,1

p (M) are conjugate to
each other and isomorphic to Cn

p arbitrary so applies to complexified tangent bundle i.e. TCM = T 1,0M ⊕T 0,1M.
T 1,0M,T 0,1M called holomorphic and anti-holomorhpic tangent bundles resp.

N.B. Sections of complexified bundles are complex-valued

This decomposition allows us to project out holo & anti-holo pieces e.g.
Sa = Sα + S ᾱ (Latin indices are real, Greek indices are complex).
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Complex Mfolds (9): (p, q)-forms

kth wedge power of T ∗M denoted ΛkT ∗M. Smooth sections are
called k-forms. Space of cx-valued k-forms denoted Ak(M).

Given the decomposition of the complexified cotangent bundle
T ∗CM = T ∗1,0C M ⊕ T ∗1,0C M, we define (p, q)-forms as forms with p
holo and q anti-holo indices.

i.e. a (p, q)-form is a smooth section of
Ap,q := Γ(∧pT ∗1,0M ∧q T ∗0,1M)

e.g. Tα1...αpᾱp+1...ᾱp+qdzα1 . . . dzαpdz̄ ᾱp+1 . . . dz̄ ᾱp+q ∈ Ap,q

Ak =
⊕

p+q=k

Ap,q (take a cx-valued k-form written in real coords and

expand in terms of holo and anti-holo coords (dxa = dza + dz̄ ā) and
take all combinations of dz , dz̄ ’s).
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Complex Mfolds (10): (p, q)-forms

(p, q)-forms will be useful later on.

Exterior derivative also decomposes as d = ∂ + ∂̄

∂ : Ap,q → Ap+1,q, ∂̄ : Ap,q → Ap,q+1

d2 = 0⇒ ∂2 = 0, ∂̄2 = 0, ∂∂̄ + ∂̄∂ = 0.
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Kähler Mfolds (1): A Hermitian Metric

Kähler mfolds are a subclass of cx mfolds and, as
such, are naturally oriented.

In addition to J, Kähler mfolds have a Hermitian
metric g (+ associated connection) and can thus be
denoted by the triplet (M, g , J).

Hermitian metric g satisfies
g(v ,w) = g(Jv , Jw)⇒ gab = Jc

a Jd
b gcd J is

block-diagonal with holo e-values i and anti-holo
e-values −i i.e. gab = gαβ̄ + gᾱβ

It’s a symmetric, +ve definite inner product
T 1,0M ⊗ T 0,1M → C

Symmetry means that line element is
ds2 = 2gαβ̄dzαdz̄ β̄
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Kähler Mfolds (2): Fundamental 2-forms

Given a Hermitian g , we can define a fundamental 2-form ω by
ω(v ,w) = g(Jv ,w)∀v ,w ∈ Γ(TM)

In real cpts, ωab = 1
2 Jc

a gcb.

In cx cpts, J = diag(i , . . . , i ,−i , . . . ,−i)⇒ ωab = 1
2 igαβ̄ − 1

2 igᾱβ

As a differential form, ω = igαβ̄dzα ∧ dz̄ β̄ i.e. actually a (1, 1)-form.

So far, this defines a Hermitian mfold.
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Kähler Mfolds (3): Kähler ⊂ Hermitian

In order for the Hermitian mfold (M, g , J) to be a Kähler mfold, we require
ω to be closed; dω = 0.

Then ω is a Kähler form, g a Kähler metric and (M, g , J) a Kähler mfold.

dω = 0⇔ ∂γgαβ̄ = ∂αgγβ̄ ⇔ gαβ̄ = ∂α∂̄β̄K (z , z̄)

K (z , z̄) is called the Kähler potential. K isn’t unique: Kähler
transformations K (z , z̄)→ K (z , z̄) + f (z) + f̄ (z̄) give same metric.

Aside: In fact, ωn ∝ volume form on M confirming natural orientability.
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Kähler Mfolds (4): 2 out of 3 Theorem

Since, in cx coords, Ja
b =

(
iδαβ 0
0 −iδᾱ

β̄

)
, we can show that all cx mfolds

satisfy ∇cJa
b = ∂cJa

b + iΓa
cdJd

b − iΓd
cbJa

d = 0

The 2 out of 3 theorem states that given any two of
∇g = 0, dω = 0,∇J = 0, the third is always true as well.

Note that dω = 0⇒ (∂ + ∂̄)ω = 0⇒ ∂ω = ∂̄ω = 0 They’re independently
zero since ∂, ∂̄ map Ap,q to different spaces (no possibility of cancellation).

Consequently, expanding in cpts we find ∂αgβγ̄ = ∂βgαγ̄ , ∂̄ᾱgβκ̄ = ∂̄κ̄gβᾱ
(g = ∂∂̄K and partial derivatives commute).

Only unmixed cpts of connection (Christoffel symbols) are non-zero.
Important as it means no mixing of holomorphic and anti-holomorphic pieces
of tensor fields under parallel transport.
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(Co-)homology (1): Homology Basics

Standard construction of homology takes some object X e.g. topological
space, manifold, etc. on which we define a sequence of abelian groups
A0,A1, . . . connected by homomorphisms ∂n : An → An−1 which are
nilpotent (∂n−1 · ∂n = 0).

This forms what’s known as the chain complex

. . .
∂n+1→ An

∂n→ An−1
∂n−1→ . . .

∂2→ A1
∂1→ A0

∂0→ 0

The nilpotency of the so-called ‘boundary operators” is such that
Im(∂n−1) ⊂ Ker(∂n)

This means we can define the nth homology group as the quotient

Hn(X ) := Ker(∂n)
Im(∂n−1)

Often we use the notation Zn(X ) := Ker(∂n) (nth cycle groups) and

Bn(X ) := Im(∂n) (nth boundary groups) in which case Hn(X ) = Zn(X )
Bn(X )
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(Co-)homology (2): Cohomology Basics

Cohomology works in a similar fashion. Difference is the homomorphisms work in
direction of increasing n i.e. ∂n : An → An+1

We set up what’s known as a cochain complex

0
∂0→ A1

∂1→ A2
∂2→ . . .

∂n−2→ An−1
∂n−1→ An

∂n→ . . .

We define the nth cocycle and coboundary groups by Z n(X ) := Ker(∂n) and
Bn(X ) := Im(∂n) resp. We note Bn−1 ⊂ Zn by nilpotency of ∂n

The nth cohomology group is then Hn(X ) := Ker(∂n)
Im(∂n−1)

= Zn(Z)

Bn−1(X )

A theorem of de Rahm tells us homology and cohomology are dual to one another.

Makes sense since homology → cohomology involves replacing each An by its dual
A∗n and the homomorphisms ∂n : An → An−1 are replaced by their transpose
∂T
n : An−1 → An (appear to have relabelled this map to ∂T

n−1 in above cochain
complex).
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(Co-)homology (3): de Rahm

Begin by reviewing situation on real n-fold M i.e. take X = M in the above.

Since the exterior derivative takes k-forms to (k + 1)-forms i.e.
d : Ak → Ak+1, it’s possible to construct a cochain complex:

0
d→ A1

d→ A2
d→ . . .

d→ An−1
d→ An

d→ 0
The 0 on RHS is because can’t have (n + 1)-forms on an n-fold.

k th cocycle group Zk is just group of closed k-forms

Hk
DR = Z k

Bk−1

Hk
DR is a quotient group consisting of equivalences classes (cohomology

classes) of closed k-forms where two closed k-forms are equivalent if they
differ by an exact form i.e. ωk ∼ ωk + dαk−1
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(Co-)homology (4): Poincare Duality and Betti Numbers

k th Betti number defined as bk = dim
(
Hk(M)

)
Poincare duality states Hk(M) ' Hn−k(M) and thus bk = bn−k for an
n-fold M.
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Dolbeaut Cohomology (1)

Previous examples (e.g de Rahm) were for real mfolds. Dolbeaut
cohomology is for cx mfolds.

Very similar but this time we use the operator
∂̄ : Ap,q(M)→ Ap,q+1(M). This involves (p, q) forms which rely on
the holomorphic structure, which in turn relies on the existence of J
(need ±i e-spaces to define a holomorphic split of tangent/cotangent
bundles).

We find Hp,q

∂̄
(M) =

Zp,q

∂̄
(M)

∂̄(Ap,q−1(M))

On a compact Kähler mfold (and hence CY mfold), the
decomposition of kth wedge power of complexified cotangent bundle
Ak into direct sums of Ap,q with p + q = k extends to cohomology

i.e. Hk(M,C) =
⊕

p+q=k

Hp,q

∂̄
(M)
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Dolbeaut Cohomology (2)

Analogous to Betti numbers, we introduce Hodge numbers
hp,q = dimC(Hp,q

∂̄
(M))

For compact, connected mfolds (e.g. CY), hp,q are finite and can be
arranged in Hodge diamond

Draw Hodge diamond for dimC(M) = 3 (as we’ll later be interested in
CY 3-folds.

Can introduce an operator ∂̄∗ : Ap,q(M)→ Ap,q−1(M). Then
∂̄-Laplacian is ∆∂̄ = (∂̄ + ∂̄∗)2.

A (p, q)-form ψ is harmonic if ∆∂̄ψ = 0
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Dolbeaut Cohomology (3)

Theorem of Hodge says every (p, q)-form ϕ can be decomposed as
ϕ = h + ∂̄ψ + ∂̄∗η where
h ∈ Hp,q(M), ψ ∈ Ap,q−1(M), η ∈ Ap,q+1(M).

If we want ϕ closed (∂̄ϕ = 0) then need ∂̄h + ∂̄2ψ + ∂̄∂̄∗η = 0

But ∆∂̄h = 0⇒ ∂̄h = 0 and ∂̄2ψ = 0 automatically. Thus we require
∂̄∗η = 0.

Thus Zp,q

∂̄
(M) = Hp,q(M)⊕ ∂̄Ap,q−1(M)⇒ Hp,q(M) =

Zp,q

∂̄
(M)

∂̄Ap,q−1(M)
'

Hp,q

∂̄
(M)

Also have the following identities∑
p+q=r

hp,q = br ,
∑
p,q

(−1)p+qhp,q =
∑
r

(−1)rbr = χ(M)
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Bundle Valued Cohomology

To define CY mfolds, we need Chern classes, and this needs bundle valued
cohomology.

Vector bundle of rank r over a base space M (cx mfold) is where the fiber F is
isomorphic to Cr i.e. F ' Cr

This means we can treat F as a mfold in own right and introduce coords
ξ = (ξ1, . . . , ξr ) ∈ Cr on some patch U of F .

If we want a holomorphic vector bundle then we need additional structure: we
require the transition fns between different coordinate systems on non-trivial patch
intersections U ∩ U ′ 6= ∅ must be r × r matrices of holomorphic fns.

This is a cx mfold so set up a bundle valued Dolbeaut cohomology using operator
∂̄ : Ap,q(V )→ Ap,q+1(V ).

N.B. Ap,q is space of (p, q)-forms whilst Ap,q(V ) is space of (p, q)-forms valued in
V i.e. element of Ap,q(V ) is a vector with r components, each of which is a
(p, q)-form.

Bundle valued cohomology groups are Hp,q

∂̄
(M,V ) =

Z
p,q

∂̄
(M,V )

∂̄(Ap,q−1(M,V ))
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Chern Classes (1)

Given a Kähler metric, we can define a (1, 1)-form Θ by Θj
i = g j p̄Ri p̄k l̄dz

k ∧ dz̄ l

Θ is curvature 2-form for T 1,0M (holomorphic tangent bundle).

The Chern form/total Chern class is

c(M) = 1 +
∑
i≥1

ci (M) = det(1 +
it

2π
Θ)|t=1 = 1 + tφ1(g) + t2φ2(g) + . . . )|t=1

dc(M) = 0 since c(M) is a det (scalar). Since dφi are all forms of different rank, they
can’t cancel so must vanish separately ⇒ dφi (g) = 0

d-closed and ∂̄-closed are equivalent on Kähler mfold4. Hence [φi ] ∈ H i,i

∂̄
(M,C) (treat M

as cx mfold) or [φi ] ∈ H2i
DR(M,R) (treat M as real mfold). Or rather,

[φi ] ∈ H i,i

∂̄
(M,C) ∩ H2i

DR(M,R)

[φi (g)] is independent of g . Changing g changes Θ by an exact form but since we are
quotienting by exact forms, this will change the representative but we will stay in same
class.

φi (g) is a representative for ci (M)

ci (M) is the i th Chern class of M. Often refer to φi (g) as i th Chern class.
4(14.138) Blumnehagen ⇒ d- and ∂̄-harmonic equivalent on Kähler mfold. But

∇dα = 0⇒ dα = 0 and similarly ∇∂̄α = 0⇒ ∂̄α = 0 (see back of p.462 Blumenhagen). Thus
d- and ∂̄- closed equivalent on Kähler.
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Chern Classes (2)

Chern classes can be generalised to any vector bundle V over M where we’d need
to use Θ as the curvature 2-form of V and use the hermitian metric h. When we
talk about Chern class of M we mean Chern class of T 1,0(M) and that’s why we
used that particular Θ on last slide.

Nakahara gives a straightforward prescription for evaluating arbitrary Chern classes
but to save time don’t give it here.

We find c0(M) = [1], c1 =
[

i
2π

Θi
i

]
=
[

1
2π

TrΘ
]
, . . .

As far as defining CY mfolds goes, we only need c1.

Can be shown that c1(M) = −
[

i
2π
∂∂̄ log detgkl̄

]
Also have ci (V ) = 0 for i > rank(V ), i > dimC(M)

Chern classes encode topological information about bundle - in a sense they
measure the extent of “non-triviality” of the bundle (trivial bundle is E = M × F ).
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Calabi-Yau Mfolds Defn

CY mfold of real dimension 2m is a compact Kähler mfold (M, J, g) with

zero Ricci form

c1(M) = [0]

Hol(M) ⊆ SU(m) (Normally treat CY as those mfolds with
Hol(M) = SU(m))

trivial canonical bundle, KM = ∧mT ∗1,0M

a globally defined, nowhere vanishing holomorphic m-form

These defns are all equivalent. Typically we use the second one.
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Calabi-Yau Proof (1)

Proof of equivalence of above defns can be found in hep-th/0702063

Want to discuss equivalence of 1 and 2 - famously proved by Calabi and Yau.

Since c1(M) =
[

1
2π

TrΘ
]

where Θ is curvature 2-form, it’s obvious that zero Ricci
form ⇒ Θ = 0⇒ c1(M) = [0]

The converse (does a Kähler mfold with c1 = [0] admit a Ricci-flat metric?) is
much more difficult to show.

Calabi conjectured the answer was yes and managed to prove existence of
Ricci-flat metric. Yau later proved uniqueness.

Very complicated proof but highlights boil down to showing

If we take a cx mfold M with Kähler metric g and associated Kähler
form ω.
∃ a unique Ricci-flat metric g ′ (still Kähler) with associated Kähler
form ω′ ∈ [ω]

This means there exists a unique Ricci-flat metric in each equivalence class of
H1,1

∂̄
(M). [ω] ∈ H1,1

∂̄
(M) are often called Kähler classes. Hence there exists a

unique Ricci-flat Kähler metric associated with each Kähler class of M.
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Calabi-Yau Proof (2)

Since there is a unique Ricci-flat Kähler metric for each equivalence class in
H1,1

∂̄
(M) and there are h1,1 many equivalence classes, the number of possible

Ricci-flat metrics on our Calabi-Yau manifold is h1,1.

But wasn’t the Ricci-flat metric postulated to be unique by Calabi? Why are there
h1,1 of them?

The idea is that if you start with a Kähler mfold (M, J, g) then the Kähler form ω
is in a fixed equivalence (Kähler) class and changing g cannot move you to
another class. Consequently, we are in a fixed Kähler (equivalence) class [ω] of
H1,1

∂̄
(M) and then, as eluded to above, within each Kähler class, there is a unique

Ricci-flat metric g ′ that’s completely equivalent to the one we started with.
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Symmetries of hp,q and Hodge Diamond for CY3

Interested in CY3. Hodge numbers hp,q run over p, q = 0, . . . , 3 since elements of Hp,q

groups are closed (p, q)-forms, and these can’t exceed the top form on the mfold - in
this case a (3, 3)-form.
This gives Hodge Diamond.
Hodge Diamond has additional symmetries (apply in all dimensions). Shown explicitly
here for CY3 and explained below:
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Hodge Duality and Complex Conjugation

If ω ∈ Ap,q is harmonic then ∇∂̄ω = ∇∂ω = 05. Then we can check if ω̄ ∈ Aq,p is
harmonic: ∇∂ ω̄ = ∇∂̄ ω̄ = 0 by above. ⇒ for each harmonic (p, q)-form, ω, ∃
harmonic (q, p)-form, ω̄. Since Hp,q ' Hp,q, hp,q counts harmonic forms. Hence
hp,q = hq,p by complex conjugation.

Take [ω] ∈ Hp,q, [?ω] ∈ Hn−p,n−q, Then ω ∧ ?ω is a top form (suitable volume
element) and so

∫
M
ω ∧ ?ω : Hp,q × Hn−p,n−q → C is a non-singular map. This

gives the following duality (isomorphism): Hp,q ' Hn−p,n−q and hence
hp,q = hn−p,n−q.

5∇d = ∇∂ = ∇∂̄ on Kähler mfolds.
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h0,0 and hn,n

Because H0,0 ' H0,0, h0,0 counts the dimension of the space of (0, 0)-harmonic
forms i.e. space of harmonic fns

Harmonic fns satisfy max principle: On a compact space K , f achieves max/min
on boundary. If K has no boundary then f must be constant.

Since Calabi-Yau spaces are compact (see defn) and without boundary, harmonic
fns must be const. This means H0,0 = {const} = C and so h0,0 = dimCH0,0 = 1.

This also fixes hn.n = 1 by Hodge duality (hp,q = hn−p,n−q).
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hn,0 and h0,n

A trivial bundle is where the multiplet (E ,B, π,F ) satisfy E = B × F .

If a rank k vec bundle is trivial then E = M × Ck .

CY mfolds have trivial canonical bundle, KM = ∧nT ∗1,0M

Sections of KM are ∝ dz1 ∧ · · · ∧ dzn. If we try to make another (n, 0)-form basis
vector from the {dz i} we get something ∝ above (as it’s top form). ⇒ KM is 1d6

Trivial canonical bundle ⇒ E = M × C.

Corresponding to M × {1}, there is a particular holomorphic (n, 0)-form, Ω, called
holomorphic volume form. So trivial KM ⇒ ∃ at least 1 (n, 0)-form.

Ω is holomorphic and hence ∂̄Ω = 0⇒ [Ω] ∈ Hn,0.

We have seen that other such (n, 0)-forms are ∝ Ω i.e. of the form f Ω where f is
some cx fn.

Maximum modulus principle says f holomorphic ⇒ f = const. Because
f = const, we have Ω ∼ f Ω and thus Hn,0 = {[f Ω]} and so hn,0 = dimCH

n,0 = 1

This fixes h0,n = 1 by complex conjugation (hp,q = hq,p).

6
Only has 1 basis vector: dz1 ∧ · · · ∧ dzn
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Brief Aside: Anti-Canonical Bundle

If M is CY mfold with canonical bundle KM = ∧nT ∗1,0M. then the anticanonical
bundle K∗M is defined as the bundle, whose Whitney sum7 with the canonical
bundle is the trivial bundle.

For a CY mfold, KM is already a trivial bundle hence the anticanonical bundle is
empty.

The first Chern class of M is the same as the first Chern class of K∗M i.e.
c1(M) = c1(K∗M) = −c1(KM).

Since K∗M is empty, c1(K∗M) = 0 and so c1(M) = 0 as it should be for a CY mfold.

This is just an aside to tie together some of the defns of a CY mfold.

7means for adding bundles - see Nakahara
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Summary

For our CY3, we now have h0,0 = h3,3 = h0,3 = h3,0 = 1.

To make the following arguments simpler, we will restrict to CY3 although
they can be generalised to cover CYn as well.
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hp,0 for 0 < p < n = 3

Theorem8 says that for any d-harmonic s-form ζ, let
F (ζ) := Rm

nζ[nr2...rs ]ζ
[mr2...rs ] + s−1

2
Rm

n
p
qζ[nqr3...rs ]ζ

[mpr3...rs ] and if F (ζ) is positive
semi-definite then ζ is covariantly constant.

We will look for harmonic 1-forms so we take s = 1. This kills the 2nd term of F .
The 1st term vanishes because CY mfolds are Ricci-flat (Rm

n = 0). This means
that F (ζ) = 0 i.e. F is positive semi-definite for 1-forms on CY mfolds.

To complete the theorem and find a harmonic 1-form, it remains to show ζ is
covariantly constant i.e. doesn’t change under parallel transport.

However, we know that CY3 mfolds have a SU(3) holonomy group and a 1-form ζ
will transform under the 3⊕ 3̄ rep of SU(3) i.e. is changed by parallel transport.

⇒ ζ not covariantly constant ⇒ ζ not harmonic ⇒ @ d-harmonic 1-form.

d-harmonic refers to de Rahm cohomology so H1 = ∅ and since H1 ' H1, b1 = 0.

But b1 =
∑

p+q=1

hp,q = h0,1 + h1,0 and since hp,q ≥ 0, we must have h0,1 = h1,0 = 0

8p32 CY Mfolds: A Bestiary for Physicists, T. Hübsch
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Killing The Remaining Peripheral Hodge Numbers

A CYn is known to have a unique holomorphic (n, 0)-form Ω (holomorphic volume
form). This is a (3, 0)-form for CY3.

If we take [α] ∈ H0,q, ∃ unique [β] ∈ H0,3−q such that
∫
M
α ∧ β ∧ Ω = 1 (N.B.

integrand is a (3, 3) top-form).

This sets up a duality (isomorphism) between H0,q and H0,3−q.

Hence h0,q = h0,3−q (sometimes called holomorphic duality).

We had h0,1 = 0. So h0,2 = 0 by holo duality. Then h2,0 = 0 by conjugation. Then
h1,3 = 0 by Hodge dual and then h3,1 = 0 by conjugation.

We also had h1,0 = 0⇒ h2,3 = 0 by Hodge duality. Then h3,2 = 0 by conjugation.

To summarise h1,0 = h0,1 = h2,0 = h0,2 = h2,1 = h1,2 = h3,1 = h1,3 = 0

The outside of Hodge diamond are fixed as 1s or 0s (true for CYn not just CY3).
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Independent Hodge Numbers on CY3

Remaining unfixed Hodge numbers in CY3 diamond are h1,1, h1,2, h2,1, h2,2.

These are not independent as h1,2 = h2,1 (conjugation) and h1,1 = h2,2 (Hodge
dual).

Independent Hodge numbers for CY3 are h1,1 and h2,1.

h1,1 measures deformations of Kähler structure (ω) and h2,1 measures
deformations of complex structure (J).

Since hp,q ≥ 0 ∀p, q, we know h2,1 ≥ 0 and h1,1 ≥ 1 (CY is Kähler so ∃ at least
one ∂̄-closed (1, 1)-form: ω)

Important Note: In higher dimensions, there are obviously more independent
Hodge numbers. e.g. for d = 4, 3 are independent.
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Mirror Symmetry

There is a fascinating symmetry of CY mfolds, called mirror symmetry, that can be seen
on Hodge Diamond.

Given a CY mfold M, ∃ another CY mfold M′ of same dimension s.t.
hp,q(M) = h3−p,q(M′).

This mirror symmetry exchanges h1,1 and h2,1 on Hodge diamond.

Although two CY mfolds M,M′ may look very different geometrically, string theory
compactification on these manifolds leads to identical effective field theories.

Means that CY mfolds come exist in mirror pairs (M,M′).

IIA on M mirror dual to IIB on M′ whilst IIB on M mirror dual to IIA on M′.

Mirror symmetry can be shown to be special case of T-duality (Strominger, Yau, Zaslow).

Interesting case when we consider the mirror dual of CY mfold M with h2,1(M) = 0. Can
anyone see the problem? The mirror dual M′ will have h1,1(M′) = 0. However, since CY
mfolds are a subclass of Kähler mfolds (for which ∃ fundamental (1, 1)-form) which all
have h1,1 ≥ 1, the mirror dual M′ is not CY, or even Kähler. ⇒ ∃ an extended space of
compact spaces (see Wiki article).

A CY mfold with h2,1 = 0 is called a rigid Calabi-Yau.
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What can we say about M in this extended space?

This was mentioned in talk by Keshav Dasgupta on 8/5/13.

He discussed how mirror symmetries could talk Kähler mfolds to
non-Kähler mfolds (Kähler mfolds all have h1,1 ≥ 1 so will be similar
to CY case discussed on previous slide.

What are these other manifolds? Can we name/describe them?

They are things like “balanced mfolds”, “half-flat mfolds” etc

But what are these? There is a paper “Non-Kähler String
Backgrounds and their Five Torsion Classes” by Cardoso et al. that
discusses this: [arXiv: 0211118v3]
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Torsion Classes: Mfold Classification for Physicists

If we are on a 6d mfold (3 cx dimensions) e.g. CY3 then we can define 5 so-called
SU(3) structures or torsion classes W1, . . . ,W5.

If we know the fundamental (1, 1)-form, ω, and the holomorphic (3, 0)-form, Ω,
then it is possible to calculate all of W1, . . . ,W5 very easily (see Cardoso paper for
exact formulae).

This provides a much simpler way of classifying manifolds as CY, Kähler etc than
e.g. computing Chern classes. Interestingly, mathematicians already knew about
these structures before CY mfolds were studied in physics.

Some interesting relations are:

W1 = W2 then mfold is hermitian (and hence also complex).
2W4 = W5 then mfold preserves SUSY
W1 = · · · = W5 = 0 then mfold is CY3

There are a variety of other relations on the Wi that allow us to classify non-CY
mirror mfolds (which arise if the original CY3 mfold has h2,1 = 0) or indeed allow
us to classify manifolds in general.
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Alternative View: SCFTs (1)

See arXiv: hep-th/9304045 for details

Better statement of mirror symmetry is that CY mfolds are the realisation of an
N = 2 SCFT.

A given SCFT can be realised as a CY mfold in two different ways: M and M ′

(whose Hodge numbers are related by mirror symmetry).

In underlying SCFT there’s no natural way to decide which operators correspond
to (1, 1)-forms and which correspond to (2, 1)-forms in an associated CY.

Because we don’t know which type of forms to assign the operators to, someone
created mirror symmetry in which any SCFT corresponds to a pair of CYs where
the role of these two types of forms are exchanged.
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Alternative View: SCFTs (2)

How does the SCFT viewpoint handle the mirror of a rigid Calabi-Yau?

Paper by Candelas et al. considers a specific rigid Calabi-Yau, M, with
h2,1 = 0, h1,1 = 36.

By identifying M with the Gepner model 19, it’s possible to give a geometric
interpretation to M ′ as a representative of a class of generalised Calabi-Yau mfolds
of dimension 7 with positive first Chern class.

Despite having odd dimensions, these generalised CYs correspond to SCFTs with
c = 9 and so are perfectly good for compactifying heterotic string to 4 dimensions
of spacetime.

As a final note on mirror symmetry, we point out that it is still poorly understood.

In particular,

It hasn’t been proven (it’s not known under what circumstances mirror symmetry is
true).
There’s no general procedure for constructing the mirror of a given CY mfold. Only
a few examples are explicitly known.
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What’s the point? Why is Hodge diamond important?

Euler characteristic χ = 2(h1,1 − h2,1)

Earlier we said we were interested in CY 3-folds for dimensional reasons and now,
because we want 3 generation models (with χ = ±6) we can further restrict to
only CY 3-folds with h1,1 − h2,1 = ±3.

It may be tricky to compute h1,1, h2,1 for certain CY 3-folds. However, there are
many ways of computing χ. Often it’s easier to find χ and one of the Hodge
numbers. This then fixes the other and once we have (χ, h1,1, h2,1), all topological
info for the CY3 is fixed.
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Constructions: An Example (1)

So far, all extremely abstract. Try to conclude with a more tangible example.

Recall that the weighted projective WP4
a,b,c,d,e satisfies

(v ,w , x , y , z) ∼ (λav , λbw , λcx , λdy , λez) where a, b, c, d , e are the weights of
each of the coordinates v ,w , x , y , z respectively. The equivalence relation with the
weights means WP4 is a 4d surface in C5 (hence 5 coordinates with 1 constraint).

Now complex projective space is a type of weighted projective space where all the
weights are 1. So, we see CP4 = WP4

1,1,1,1,1

We claim that whenever we have CPn, then a polynomial of order n + 1 (which
means each term has weight n + 1) is a Calabi-Yau mfold of dimension n − 1

Thus, if we look at CP4, a polynomial where each term is of weight 5 is an
example of a Calabi-Yau 3-fold.
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Constructions: An Example (2)

An example would be the quintic polynomial z5
1 + z5

2 + z5
3 + z5

4 + z5
5 = 0 in CP4.

Since in complex projective spaces, all weights are 1, each term here is clearly of
weight 4 + 1 = 5. Thus this quintic should define a CY mfold.

Recall that CP4 is space of lines in C5 (hence 5 coordinates z1, . . . , z5). But the
weighted equivalence relation defines a 4d surface within C5 so CP4 is really 4d.
Then the polynomial eqn reduces this further to a 3d surface - thus CY mfold is a
3d hypersurface within the 4d space CP4.

Thus the quintic in CP4 really defines a CY 3-fold (which is what we’re interested
in as string theorists).

It’s the most famous and widely studied example of a CY3.
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Constructions: An Example (3)

Can we check quintic in CP4 is really a CY mfold?

The “hands-on” way to check something is CY is to find a globally defined,
nowhere vanishing holomorphic (n, 0) form.

We’ll give sketch of how to prove it using Chern classes since we discussed them
above.

To begin with we need to examine the Chern classes of CPn
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Constructions: An Example (4)

Homogeneous coordinates z i are coordinates in Cn+1 before we identify points on
same line to form CPn (this is the weighted identification
(z0, . . . , zn) ∼ (λz0, . . . , λzn)).

⇒ ∂
∂z i

are basis vectors on T (1,0)Cn+1.

If L is tautological line bundle (line bundle whose fiber, F , is the line it respresents
in Cn+1) then the hyperplane line bundle L−1 is the dual line bundle we must add
(Whitney sum) to L to get the trivial bundle.

If si (z) are sections of L−1, we can view them as fns/coordinates on Cn+1

⇒ T (1,0)Cn+1 is spanned by si (z) ∂
∂z i

As for CPn, T (1,0)CPn is also spanned by si (z) ∂
∂z i

(since ∂
∂z i

are
(n + 1)-dimensional, they’re guaranteed to span (cover) the n-dimensional space
CPn).
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Constructions: An Example (5)

Now let’s call the hyperplane line bundle L−1 = OCPn (1) following Bouchard’s
notation.

Its sections are si (z) (see last slide)

Thus ∃ a map f : OCPn (1)⊕(n+1) → T (1,0)CPn (i.e. acts on n + 1 copies of
hyperplane line bundle) such that Ker(f) is the trivial line bundle C
i.e. f : (z0, . . . , zn) 7→ zi

∂
∂zi
' 0 in CPn

N.B. zi
∂
∂zi
' 0 in CPn whilst si (z) ∂

∂zi�'0 in CPn i.e. Ker(f ) = {si (z)|si (z) = zi}
We can summarise this with the following short, exact sequence:
0→ C→ OCPn (1)⊕(n+1) → T (1,0)CPn → 0
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Constructions: An Example (6)

By exact sequence, we mean that the image of one map is the kernel of the next
map c.f. nilpotency in cohomology. We can do some checks of this:

Im (0→ C) = {0} ⇒ Ker (C→ OCPn (1)⊕(n+1)) = {0} This means

C→ OCPn (1)⊕(n+1) is injective.

Ker (T (1,0)CPn → 0) = T (1,0)CPn ⇒ Im (OCPn(1)
⊕(n+1) → T (1,0)CPn) = T (1,0)CPn

This means OCPn(1)
⊕(n+1) → T (1,0)CPn is surjective.

A property of Chern classes says that if we have a short exact sequence
0→ A→ B → C → 0 then c(A) = c(B)

c(C)
where c(A) is the total Chern class of A

Thus c(C) = c(OCPn (1)⊕(n+1))

c(T (1,0)CPn)
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Constructions: An Example (7)

But c(C) = 1 trivially (since C is flat so Ricci 2-form vanishes)

Thus c(CPn) := c(T (1,0)CPn) = c(OCPn (1)⊕(n+1))
c(C)

= c(OCPn (1)⊕(n+1)) =

[c(OCPn (1))]⊕(n+1)

But OCPn (1) is a line bundle ⇒ c(OCPn (1)) = 1 + c1(OCPn (1)) + 0 since
ci (V ) = 0 ∀ i > rank (V ) = 1 (line bundle)

Let x = c1(OCPn (1)).

Then c(CPn) = (1 + x)n+1
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Constructions: An Example (8)

Next we consider a hypersurface X in CPn defined by zero locus of some
polynomial of order d e.g. our CY3 in CP4 (for which d = 5).

NX is the normal bundle of X (consisting of vectors normal to hypersurface X -
see picture in Bouchard’s notes).

NX defined by NX = T (1,0)CPn|X
T (1,0)X

(quotient space)

This means we form NX by taking all holomorphic tangent vectors in CPn

restricted to hypersurface X and any that are tangent to X are identified. Since
vectors on X can be decomposed into tangent and normal parts, this leaves just
the normal vectors.

If we take the Chern class of the above quotient space we get

c(NX ) = c
(

T (1,0)CPn|X
T (1,0)X

)
=

c(T (1,0)CPn|X )
c(T (1,0)X)

Earlier we say that a short exact sequence between A,B and C set up a
relationship between the Chern classes. We can now reverse this to get the
following short exact sequence
0→ T (1,0)X → T (1,0)CPn|X → NX → 0 for which we could check exactness
(injectivity/surjectivity) as before.
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Constructions: An Example (9)

So we have c(X ) := c(T (1,0)X ) =
c(T (1,0)CPn|X )

c(NX )

But sections of hyperplane line bundle OCPn (1) are the coordinates z i (Bouchard).

Hypersurface X is defined by zero locus of some polynomial of order d in the
coordinates z i . But if we use locus of values 1, 2, 3, . . . then this just picks a
different hypersurface in CPn i.e. shifts surface up/down normal bundle NX

⇒ NX = OCPn (d) i.e. normal bundle is hyperplane line bundle of order d
(importantly it is still a line bundle so ci = 0∀i > 1

Thus c(NX ) = c(OCPn (d)) = 1 + c1(OCPn (d)) (expansion terminates at c1 since
it’s line bundle so ci = 0∀i > 1)
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Constructions: An Example (10)

Earlier we had c(OCPn (1)) = 1 + x

Since c(M) = det (1 + it
2π

Θ) and ch(M) = tr (exp ( it
2π

Θ)). Thus
ch(OCPn (1)) = ex

⇒ ch(OCPn (d)) = edx ⇒ c(OCPn (d)) = 1 + dx (no higher terms since it’s a line
bundle)

On previous slide we had c(X ) = c(T (1,0)CPn|X )
c(NX )

= c(CPn)
c(OCPn (d))

= (1+x)n+1

1+dx
by

substituting earlier results.

But (1 + dx)−1 = 1− dx +O(x2) = 1− dx as higher order terms vanish for line
bundle

And (1 + x)n+1 = 1 + (n + 1)x +O(x2) = 1 + (n + 1)x with higher order terms
vanishing for same reason

Thus
c(X ) = (1+x)n+1(1+dx)−1 = (1 + (n + 1)x) (1− dx) = 1+(n+1)x−dx+O(x2)
with higher order terms vanishing again

This simplifies to c(X ) = 1︸︷︷︸
c0(X )

+ (n + 1− d)x︸ ︷︷ ︸
c1(X )
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Constructions: An Example (11)

Thus if the polynomial is of degree d = n + 1, then c1(X ) = 0 and X is a CY
mfold.

For our case of the hypersurface in CP4 defined by the zero locus of the quintic
polynomial z5

1 + z5
2 + z5

3 + z5
4 + z5

5 = 0, we have d = 5 and n = 4.

Clearly n + 1− d = 0 so the first Chern class vanishes and the hypersurface clearly
defines a CY3.
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