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The cosmological evolution is described by the  Λ-CDM model :

Inflation : Dilutes inhomogeneities, solves horizon, flatness 
problems...

Reheating followed by phase transitions (electroweak, QCD 
confinement) ➪ radiation and matter dominated eras.

Λ-dominated era : Λ � 0

Standard cosmology



Limitations : 

In General Relativity : Gravity is not quantized. 

Big bang singularity.

Phenomenological approach : GR is coupled to fluids, with 
state equations Pi = wi ρi and % of ρi imposed to fit 
observations

wi = 1/3 for radiation,

wi = 0 for matter (Dark = 27%, SM = 3%)

wi = -1 for Dark Energy Λ (70%).

No derivation of the nature of these (dark) fluids. 

Phase transitions between eras imposed by hand. 



Other limitations : Gravity is not unified to the other 
interactions. The Standard Model of particle physics is 
postualted. 

It has his own difficulties :  

Large number of parameters to fix. 

Hierarchie problem : at 1-loop, the Higgs mass is attracted 
to a very large UV cut-off. 

Extensions such as the Minimal Supersymmetric Standard 
Model : supersymetry is « softly broken ».

Need to explain the hierarchy                               .

[Fayet]

Msusy � MPlanck



« Microscopic » theory, which contains an infinite number 
of degrees of freedom derived from first principles. 

➪ Describes quantum gravity consistently.

➪ hope : Describe big bang without initial singularity.

Derivation of the nature of the cosmic fluids and their state 
equations. 

Unifies gravity with gauge interactions : Cosmology to 
particle physics. 

➪ Hope : Describe the phases of the universe and the 
transitions between them in a single and coherent theoretical 
context.

Stringy approach



How can we approach such a program?
It is natural to look for string models, which describe at 
tree level time-dependent backgrounds. But not so many 
are known!!
Generically, one finds Anti-de Sitter or Minkowski universes : 
Admit time-independent metrics : Static
Since we want at the end a small and positive cosmological 
constant, let us focus on the case Λtree = 0. 

At 1-loop :  
The non-supersymmetric models will generate Λ1-loop.
The latter backreacts on the originally static background : A 
quasi static evolution emerges. 
The induced cosmology is a pure quantum effect ! 



Non susy models :  
If there is no susy at all : Λ1-loop of order ±1  
For Λ1-loop to be as small, we focus on models where susy is 
spontaneously broken at tree level (super-Higgs mechanism). 
The scale Msusy of susy breaking is a scalar field, which may 
evolve in time.
It can decrease and generate the hierarchy                        .Msusy � MPlanck

Simplest realization is a susy model at finite temperature T.
For realistic models : break spontaneously susy at scale Msusy 

and switch on T .



The general picture we find looks like : 

Hagedorn Era
T ≈ Mstring

Intermediate 
Era

Mew < T < Mstring

Standard 
cosmology

T < Mew

Some models describe a bounce : contraction → expansion with 
no singularity at the transition.

Msusy and gst are expected be stabilized by IR effects : 
Electroweak radiative breaking when T≈Mew ➪ <Msusy> ≈Mew . 
The baryogenesis, nucleosynthesis,... then follow. 

T, Msusy and the string coupling gst decrease as the universe 
expands.



A generic difficulty : Existence of massless scalars with 
undertermined VEV’s (flat directions of the potential)=moduli 

Would mediate long range force, in contradiction with 
precision tests on the gravitational force.

Gauge couplings and masses depend on the moduli VEV’s : 
The theory loses its predictability.

Litterature : Solve this problem in susy models. The moduli 
remain massless to all order in perturbation theory ➪ Non-
perturbative effects to break susy and give masses : Difficult!!

When susy broken at tree level, except for Msusy and gst, 
the moduli admit a potential at 1-loop. Acquire masses 
and are stabilized at local minima.

Moduli stabilization



This is non trivial : Cosmological moduli problem

If they acquire a mass, they will oscillate around their minima

which overcloses the universe (except if oscillations are 
unaturally tuned to be very small).

If they are massive enough, they can decay into gauge bosons 
before nucleosynthesis (in order to not alter the abundances of 
4Helium and Deterium) :

➪ Mmod > 10 TeV , which is in contradiction with           
Mmod = O(Msusy) ≈ 1 TeV to solve the hierachy problem. 

�
ρ̇mod + 3H(ρmod + Pmod) = 0

Pmod � 0 (for dust)
=⇒ ρmod ∝ 1

a3
� 1

a4
(for radiation)



In the intermediate era, the masses are time-dependent 
and drop with time: The scalars are never produced 
abundantly (Boltzmann suppression) and 

Mmod(t) ∝ T (t) =⇒ ρmod ∝ 1/a4

i.e. no need to decay into radiation !!

Only at the exit of the intermediate era, when T(t)≈Mew, the 
masses acquire their final constant values Mmod = O(Msusy) ≈ 
1 TeV.



Plan
String thermodynamics.

State equations and induced cosmology.

Moduli stabilization in perturbative heterotic string. 

At finite temperature T only (no Msusy). 

With both Msusy and T. 

Including D-branes (solitonic states) for the open string case 
(finite T only). 

Calabi-Yau compactifications in type II string (finite T only). 



In quantum statistical physics, ρ and P can be evaluated from 
the canonical partition function                        .                     Zth = Tr e−βH

String Thermodynamics

In QFT, it can be computed by a Euclidean path integral on

(φis	 periodic for a boson, antiperiodic for a fermion)
At weak coupling i.e. for a perfect gas, the free energy for a 
free field is  

F = − lnZth

β
=

1

2β
tr ln(−�+ µ2)

It can be evaluated and rewritten in 1st quantized formalism : 
The virtual loop of the particle wraps       times           .

S1(R0)× TD−1(Rbox), Zth =

�
Dϕ e−SE [ϕ], where β = 2πR0

m̃0 S1(R0)



F = −(−)F
� +∞

0

dl

2l

Vbox

(2πl)
D−1

2

e−
µ2l
2

1√
2πl

�

m̃0

e−
β2m̃2

0
2l (−)Fm̃0

= −Z

β
where Z is the vacuum-to-vacuum amplitude         
(the 1-loop partition function in the Euclidean background)

The same amplitude in string theory reads

1

2π
√
τ2

�

n0,m̃0

e−
πR2

0
τ2

|n0τ+m̃0|2(−)Fm̃0+F̃n0+m̃0n0

�

F
dτ1dτ2

�

n0,m̃0

−→
� +∞

0
dτ2

� 1/2

−1/2
dτ1

�

m̃0

with n0 = 0

Modular invariance : 

➪ Free energy for the infinite set of string oscillation modes.

−Z

β
= −(−)F

�

F

dτ1dτ2
2τ2

Vbox

(2π
√
τ2)D−1

�

spectrum

e−πµ2τ2



Induced cosmology

where

At the tree level, the metric is the analytic continuation of that 
of S1(R0) × TD−1(Rbox) 

ds2 = −β2 dt2 + a2
�
dx12 + · · ·+ dxD−12

�

At weak coupling, the string effective supergravity action at 
finite T contains a tree level part (kinetic terms) + the 1-loop 
vacuum-to-vaccum amplitude Z computed in the Euclidean 
background  S1(R0) × TD−1(Rbox)

S =

�
dDx

√
−g

�
e−2φ

�
R

2
+ 2(∂φ)2 + · · ·

�
+

Z

βV

�

−F

V

1

g2st

β = 2πR0 , a = 2πRbox



Looking for homogeneous and isotropic evolutions : 

All quantities depend only on time. 

Varaying the metric   ➪ T (1) ν
µ = diag(−ρ, P , . . . , P )µ

ν

ρ = − 1

V

∂Z

∂β
≡ 1

V

�
∂(βF )

∂β

�

V,φ,...

P =
1

β

∂Z

∂V
≡ −

�
∂F

∂V

�

β,φ,...

These relations are not derived by postulating the 1st et 2d 
low of thermodynamics.

The state equation P/ρ = w is not postulated but derived 
from the microscopic evaluation of Z.

w depends on all moduli fields and thus on time.



Heterotic string at finite T
Z is computed in S1(R0) × TD−1(Rbox) × T10−D

The 1-loop effective action in Einstein frame is

S =

�
dDx

√
−g

�
R

2
− 2

D − 2
∂µφ∂

µφ− 1

2
FMN (ΦP )∂µΦ

M∂µΦN − F
�

ΦM : metric ĝij , antisymmetric tensor B̂ij , Wilson lines Y I
i

where                and T are the masses and temperature 
measured in Einstein frame.

e
2

D−2φM̂s

➪ The free energy density      is an effective potential at finite 
temperature for the moduli !   

F

F = −TD
�

s

G

�
e

2
D−2φM̂s(ΦM )

T

�



F = −TD
�

s

G

�
e

2
D−2φM̂s(ΦM )

T

�

G is picked for zero masses : 
G(0) = σ Stefan-Botlzmann constant

G(x) ∼
�

x
2π

�D−1
2 e−x when x � 1

➪     admits a local minima at any       such that some masses 
vanish. This corresponds to enhanced gauge symmetry points. 

F ΦM
0

F = −T
D

�
nσ +

n0�

u=1

G

�
e

2
D−2φM̂u(ΦM )

T

�
+O

�
e
− M̂min

T̂

�
�

In the neighborhood of        ,ΦM
0

where the expontentially suppressed terms can be neglected for 
low enough temperature. 



a(t) ∝ 1

T (t)
∝ t2/D , φ(t) ≡ φ0 arbitrary , ΦM (t) ≡ ΦM

0

which is a radiation era,              with      sitting at a minimum. ΦM
H

2 ∝ 1

aD

In this regime, the eqs of motion admit a particular solution

Is this solution « unique » in the sense it is an attractor ?

ΦM = ΦM
0 + �

M =⇒ �̈
M + (D − 1)H �̇

M + ΛM
N �

N = 0

where                     i.e. time -dependent masses :ΛM
N ∝ TD−2

Mmod(t) ∝ T (t)
D−2

2 =⇒ 1

2
FMN �̇M �̇N ∝ 1

a
3D
2 −2

 For D ≥ 5, it is � 1

aD
i.e. radiation dominated: attractor

For D = 4, it is ∝ 1

aD
i.e. radiation-like 



Both T(t) and Msusy(t) are running away, but their ratio Msusy/T 
admits a minimum of    of order 1.

With Msusy and T

Introduce non-trivial boundary conditions along circles to break 
susy and switch on finite temperature 

F

T (t) ∝ Msusy(t) ∝
1

a(t)
∝ e4φ(t) ∝ 1√

t

 Heterotic string on
T 6

Z2 × Z2
is N = 1 in D = 4.

T =
1

2πR0
Msusy =

1

2π(
�N

i Ri)1/N

Attraction to the « unique » solution 

with other moduli stabilized as before.



This has nothing to do with the usual radiation era that takes 
place after the electroweak symmetry breaking. 

The latter defines the exit of the intermediate era and occurs 
when T≈Mew. 
Since T is proportional to Msusy, the latter will be stabilized 
during the electroweak radiative breaking around the same 
scale, thus explaing the hierarchy     

�Msusy� � MPlanck

Radiation-like :                          

But something new : 

Pthermal + Pkinetic

ρthermal + ρkinetic
−→ 1

3

Pthermal

ρthermal
−→ 1

3 +N

T (t) ∝ Msusy(t) ∝
1

a(t)
∝ e4φ(t) ∝ 1√

t



Type I string at finite T
Contains closed strings and open strings.

As in heterotic, we consider S1(R0) × TD−1(Rbox) × T10−D.

No enhanced symmetry point ➪ No moduli stabilization ?

The Heterotic and Type I strings are dual (S-dual in D=10).

Their respective gases at finite T must be dual.   

Since the backreactions we study are quasi-static, we can 
use Heterotic / Type I duality to derive the Type I 
cosmology at finite T at each instant t.



E.g. : Heterotic string close to the stabilization point Ri = 1, 
where U(1)10−D → SU(2)10−D

2π
RI

0√
λI

���
RI

i√
λI

−
√
λI

RI
i

��� = 2πRI
0

���
RI

i

λI
− 1

RI
i

���

=⇒ RI
i is stabilized at

�
λI .

Type I coupling 
 in 10 dim, λI � 1

D1-brane wrapped once with one unit 
of momentum

F = −T
D

�
nσ +

9�

i=D

2G

�
2πR0

���Ri −
1

Ri

���
�
+O(e−

M̂min
T̂ )

�

In terms of Type I dual fields 

string wrapped once with one unit of momentum



At late time, attraction                   and Ri(t) → 1 φ(t) → φ0 < 0

=⇒ φI(t) → −D − 6

4
φ0 − cst.

VEV of heterotic 
dilaton in D dim

For D > 6 : The Type I thermal gas is at strong coupling. It 
is not a surprise that solitons contribute.

For D < 6 : We are at weak coupling but massless 
solitons are still essential

In Type I cosmology to stabilize moduli.

Is essential in Type I phenomenology, since there is 
a solitonic enhanced gauge symmetry, e.g. SU(2)10−D

Stabilization of RR 2-form moduli Cij , NS-NS metric      and 

open string Wilson lines Yi
I .

ĝij



6-dimensional internal space realized by non-trivial CFT yielding  
N  = 2 susy in D=4.

We only know the massless spectrum and some other BPS states 
= short susy multiplets.

In Type IIA, the massless spectrum contains

h11 vector multiplets      : 1 gauge boson + 1 complex scalar               
h12 +1 hypermultiplets   : 4 real scalars 

Moduli space 

Special Kähler manifold : Parametrize 2-cycles volumes.

Quaternionic manifold : Parametrize the complex structure. 

Parametrize Coulomb and Higgs phases of gauge theories.

Type II on Calabi-Yau at finite T

MV ×MH



MV ×MH

Dilaton is in a hypermultiplet ➪ metric of        is corrected.

That of         is exact at tree level.

It is singular where the volume of 2-cycles vanish. 

D2-branes (= membranes) wrapped on them realize 
hypermultiplets becoming massless. [Strominger]

Integrated out from effective action, they induce an IR 
logarythmic divergence of the σ-model action.

We want to show that at finite T, the moduli in                  are 
stabilized at points where these solitons become massless.

MV

MH

MV ×MH



(I) In the vincinity of a singular point P0 in         , we identify the 
gauge group and charged matter arising from D2-branes wrapped on 
the vanishing 2-cycles.

(II) These solitonic objects are electrically charged under the gauge 
group. We can write an effective action that includes them as 
elementary fields, in addition to the massless perturbative string 
states (they are neutral). 

(III) At weak coupling, the tree level part is a σ-model based 
on                   , whose metric is non-singular and admits isometries 
we can gauge in order to reproduce the gauge theory. 

(IV) The gauging ➪ tree level potential    we determine around P0. 
- Coulomb branch = compactification on the original CY.                 
- Higgs branch = compactification on a distinct CY′.                     
Extremal transition CY → CY′ corresponds to replacing the 
vanishing 2-spheres by 3-spheres. 

MV

M̃V × M̃H

V



(V) In each branch,       ➪ tree level masses that can vanish. They 
depend on the moduli which parametrize                      . 

(VI) At 1-loop action = Tree level action evaluated in a branch + 
the associated 1-loop correction at finite T,                       .

(VII) Backreaction ➪ radiation-like era with moduli attracted to 
the origin (=intersection) of Coulomb and Higgs branches.       
Their 1-loop masses are of order T(t).                                                        
The internal CY stays at the extremal transition. 

V
M̃V × M̃H

F
�
Masses

�
moduli

��



Tree level action in the neighborhood of the conifold locus 

Stabilization at a conifold locus :

R  2-spheres vanish in CY ➪ R hypermultiplets
But in S homology classes ➪ charged under U(1)S

When the D2’s become massless, they can acquiere VEV’s 
and Higgs U(1)S . The hypers « not eaten » become 
perturbative moduli of CY′

h�
11 = h11 − S h�

12 = h12 +R− S

Stree =

�
d4x

√
−g

�
R

2
− g(0)

IJ̄
∂µX

I∂µX̄J − 1

2
∇µcAu∇µcAu − h(0)

αβ ∂µq
α∂µqβ − V + · · ·

�

V = eK
(0)
�
2QA

i Q
A
j X̄iXj CA†CA +

1

4
g(0)ī Dx

i D
x
j

�

Dx
i ≡ QA

i CA†σxCA
CA =

�
i(cA1 + icA2)
(cA3 + icA4)∗

�



Coulomb branch:                                     (original CY)

The D2-branes masses are

The 1-loop free energy     is minimal when they vanish       
➪  Xi = 0    i.e.    CY → conifold configuration

Xi arbitrary , cAu = 0

M2
A = 4 eK

(0)

|QA
i X

i|2 + · · ·

F

Higgs branch:                                                  (CY′)
   

       is minimal when the masses of the S Higgsed vector 
multiplets vanish ➪                                             
i.e.    conifold configuration ← CY′

Xi = 0 , cAu such that Dx
i = 0

cAu = 0

At the conifold locus, the vector multiplets scalars Xi and 
charged hypermultiplets         aquiere a 1-loop mass 
proportional to T(t), while U(1)S remains massless.  

cAu

F



Stabilization at a non-Abelian locus :

CY can develop a genus-g curve of AN−1 singularities, 
realized by N−1 vanishing 2-spheres. 

Wrapped D2-branes enhance U(1)N−1 to SU(N), with g 
hypermultiplets in the ajoint. 

For         , this theory is non-asymptotically free and admits 
2 branches : Coulomb (U(1)N−1 on CY), Higgs (on CY′′)

g ≥ 2

h�
11 = h11 − (N − 1) h�

12 = h12 + (g − 1)(N2 − 1)− g(N − 1)



The Cartan’s are stabilized where the tree level masses of 
the non-Cartan vector and hypermultiplets vanish         
➪                              i.e.    singular CY

Coulomb branch:   

At the non-Abelian locus, the vector multiplets scalars Xa 
and charged hypermultiplets         obtain a 1-loop mass 
proportional to T(t), while SU(N) remains massless.  

Xi = ciAu = 0

Higgs branch:   Xa = 0 , caAu such that Dbx = 0

Cartan (Xi, ciAu) arbitrary , non-Cartan X â = câAu = 0

The            are stabilized where the tree level masses of 
the SU(N) vector multiplets vanish                              
➪                              i.e.    singular CY′′

caAu

caAu = 0

caAu



Example

The scalars of the 2 vector multiplets and 2 of the 128+1 
hypermultiplets are stabilized.    

CY : degree 12 polynomial in  P4
(1,1,2,2,6) ⇒ h11 = 2, h12 = 128

Conifold locus : U(1) coupled to one D2-brane hyper 
(1− z1)

2 − z21z2 = 0

Non-Abelian locus : SU(2) coupled to 2 adjoint hypers, z2 = 1

The intersection is favored (more light fields):                                            
(z1, z2) = (1/2, 1) or (∞, 1)

We sit at the transition between the Coulomb (CY) and Higgs 
(CY′′) branches of SU(2) : 

P4
(1,1,2,2,6)[12](2, 128) ←→ P5

(1,1,1,1,1,3)[2, 6](1, 129)



The heterotic dual on K3×T 
2 is known :  The torus modulus Th 

and the axio-dialton Sh are stabilized, at strong coupling. 

In general: Any Type II compactication on a CY at finite T

We expect        to be lifted : In IIA, all 2-cycles vanish. 
The moduli in         associated to 3-cycles that can vanish 
and be resolved into 2-cycles should be lifted.    
This is not the case for all, in particular the universal 
hypermultiplet which contains the Type II dilaton.       

MV

MH



Summary
The cosmological evolution can be seen as the backreaction of 
quantum and thermal corrections on flat Minkoski space.

In a string context, there are at least 3 eras : We have focussed on 
the Intermediate one : Mstring < T < Mew

String theory provides a microscopic derivation of the cosmic 
fluids, their state equations. 

Attraction to a radiation-like evolution which brings the 
universe towards the electroweak phase transition, while 
generating the hierarchy                        .

Provides a mechanism for moduli stabilization. 

Msusy � MPlanck


