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We present notes to accompany and complement the seminar talk �Ex-

tremal and non-extremal black strings in supergravity� presented by the

author to the University of Liverpool String Phenomenology division on

Tuesday 16th October 2012.

1 Introduction

Where we try to motivate why we're interested in these theories.
I often �nd it tricky to motivate any sort of work. �It's interesting� and

�Nobody's done it� are usually motivation enough for the researcher, but don't
tend to convince the wider community to take any interest in the project. One
thing that always seems to do the trick, though, is �string theory�. Many soli-
tonic solutions in lower-dimensional supergravity theories have their origin in
con�gurations of solitonic objects in string or M-theory [1], which are then com-
pacti�ed over various Calabi-Yau or other manifolds. Understanding such lower-
dimensional objects has helped us to understand many of the non-perturbative
aspects, dualities, etc. in string and M-theory.

2 Setup

Where we describe the theories.
No matter what theory we're interested in, there are a few basics that we

need to get down before we can start looking for `solutions'. In this talk we'll
be dealing with a class of N = 2, d = (1, 4) supergravity theories coupled to
an arbitrary number of vector multiplets. I'm not going to assume an in-depth
knowledge of supergravity though. In fact, I'm not really going to assume any
knowledge of supergravity. All we really care about is that we have a theory,
which is de�ned by its �eld content and by the particular way that �eld content
comes together in an action.
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2.1 The �eld content

Supergravity multiplet. VMs. HMs.
Let's start with looking at the (on-shell) �eld content of our theory. It's a

gravity theory, so we want a spin-2 graviton in there somewhere. For those who
remember their N = 2 massless representations, you'll recall that, in N = 2
theories, the graviton appears in the so-called �supergravity multiplet� along
with a pair of spin- 32 gravitini, and a gauge �eld, the �graviphoton�

SUGRA multiplet = {ĝMN , ψMα,AM}.

I should say at this point that we'll use upper-case Roman indices from the
middle of the alphabet (M,N, . . .) to denote the 5d spacetime indices, lower-
case Roman indices from the middle of the alphabet (m,n, . . .) to denote the 3d
space(time1) indices, and those from the middle of the greek alphabet (µ, ν, . . .)
on the odd occasion when we need 4-dimensional indices.

Let us note in passing that the bosonic �eld content forN = 2 supergravity is
precisely that which you would expect for the familiar Einstein-Maxwell theories
(a graviton and a gauge boson). This fact is nicely exempli�ed in the Reissner-
Nordström familiar from your black holes course. Here, the condition that we
have an event horizon translates to the relation M ≥ |Q| between the mass
M and charge Q of the black hole. This is precisely the BPS bound from
supersymmetric theories, and tells us, in particular, that extremal Reissner-
Nordström black holes are BPS objects. This allows for the construction of the
multi-centred Majumdar-Papapetrou solutions.

Okay, back to the �eld content. The next ingredient for our theory is the
N = 2 vector multiplet (VM). Again, think back to when you studied massless
SUSY representations, and you'll recall that, in 4+1 dimensions, an N = 2 VM
contains a gauge boson, a pair of (symplectic Majorana) fermions, and a single
real scalar

Vector multiplet = {AM , λiα, φ}.

For the theory we're interested in, we want to take some number nV of these
VMs, which we label by the index x = 1, . . . , nV .

Before moving on to consider the possible actions we can construct from such
a �eld content, let us mention one more N = 2 multiplet: the hypermultiplet
(HM). This consists of 4 real scalars and 2 fermions2

Hypermultiplet = {φa, χα}.
1We'll actually just be interested in the case where the 3-dimensional theory is Euclidean,

but we'll keep things general for the most part.
2The nature of the fermions (Weyl, symplectic, Majorana, etc.) depends on the dimension

we're interested in. The hypermultiplet takes the same form in all d ≤ 6 though.
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2.2 Special geometry and the 5d action

The 5d action. Special real manifolds. Prepotential. Couplings in the action all
depend on prepotential.

It should be clear from our experience with constructing Lagrangians for
global SUSY that we can't just mash all our �eld content together in a Lorentz-
invariant way and hope for the best. The fact that we have to impose that
our action be SUSY-invariant (here, of course, we impose local SUSY) greatly
restricts the type of actions we can write down.

I'm not going to go about constructing the action for N = 2, d = (1, 4)
supergravity coupled to nV vector multiplets for you. For that, you can look in
[2]. I'll just give you the result and say a little about it. So, the bosonic part3

of the theory has the action

S5 =

ˆ
d5x

[√
ĝ

(
R̂

2
− 3

4
aij(h)∂Mh

i∂Mhj − 1

4
aij(h)F iMNF j|MN

)

+
1

6
√

6
cijkε

MNPQRF iMNF
j
PQA

k
R

]
. (1)

What have we got here? Let's �rst say something about the notation.
First, we've combined the graviphoton AM from the supergravity multiplet
with the nV gauge bosons AxM from the VMs into the quantities AiM indexed
by i = 1, . . . , nV + 1. The F iMN are the corresponding �eld strengths, as usual.
Recalling the fact that each VM came with a real scalar �eld, it may seem that
we now have 1 too many scalar �elds hi in our action. However, they are not
independent, but in fact satisfy the constraint

V̂(h) := cijkh
ihjhk = 1,

where the function V̂(h) is called the prepotential. This leaves us with the
required number of independent scalar �elds. Next, the coupling matrices aij(h)
which appear in front of the kinetic terms for the gauge �elds and scalars, and
which depend on the values of the scalars, are related to the prepotential via.

aij(h) = −1

3
∂hi∂hj log V̂(h). (2)

Finally, we note that the Chern-Simons term also contains a factor, this time
proportional to the third derivative of the prepotential.

So we note that all of the couplings in our action depend on this one function,
the prepotential V̂(h). This general phenomenon is familiar from when we build
SUSY Lagrangians, where everything depends on a single superpotential.

3We're only going to be interested in the bosonic part of supergravity here. For recent
work on dimensional reduction of the fermionic sector [3]
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3 Dimensional reduction

Where we start calculating.
Now we've written down an action for our theory, we can start writing down

some solutions! Right? Well, try it. Take the action (1), work out the Einstein
equations, and the equations of motion for the gauge �elds and scalars, and try
to �nd some �eld con�gurations which satisfy them. To say it's not easy is an
understatement: I bet you didn't even try ! So, let's pause for a moment and
think about what sort of solutions we're interested in. By deciding this, we
should be able to write down some initial ansatz for our �eld con�guration that
satis�es the symmetries, etc. that we want our putative solution to have.

3.1 Isometries

Killing vectors. Fields independent of some directions.
The �rst thing we might ask for is that the spacetime solution has some

isometries. Formally, this means that the metric satis�es

£ξ ĝMN = 0,

for some `Killing vector' ξ, where£X refers to the Lie derivative alongX4. In the
case ξ = ∂z for some coordinate z, the Killing equation reduces to the statement
that the metric is independent of z. Of course, there's nothing special about
the metric: it's just another dynamical �eld in our theory. What we're really
interested in for dimensional reduction is that all of our �elds are independent
of this coordinate z, i.e.

∂zΦ(x) = 0,

for all �elds Φ(x) in our theory.
In what we've said so far, there's no particular di�erence between spacelike

and timelike isometries. Recall that, a Killing vector ξ = ξM∂M is called timelike
if ξMξM < 0 and spacelike if ξMξM > 0. We're going to be considering both
in our applications. Timelike isometries should be familiar to you already, for
example when seeking stationary solutions. Spacelike isometries most often arise
in the context of spherical symmetry, but here we're actually going to impose
that our spacetime is translation-invariant along some spacelike direction. This
is what makes our solutions �string-like�.

Let's brie�y summarise where we stand at this moment. We have a 5-
dimensional action (1) describing the dynamics of a bunch of �elds: a graviton,
nV + 1 gauge �elds, and nV + 1 constrained scalar �elds. Based on the type
of symmetries we want our solutions to have, we've made an ansatz that each
of our �elds is independent of two of our �ve spacetime directions, call them
x0 and x4, which (for now) we take to be either spacelike or timelike (up to a
maximum of 1 timelike direction).

4Yes, I still use a £ sign to denote the Lie derivative, blame Schutz's geometry book.
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3.2 Kaluza-Klein reduction

KK ansatz for the �elds. Example of decomposing matrices, vectors. Dualising
p-form gauge �elds.

We're now all set to describe the dimensional reduction procedure. We
follow the well-known Kaluza-Klein procedure, where we take one or more of
the directions in our spacetime to be compact. A Fourier expansion of the
�elds will then give massless zero modes plus an in�nite tower of massive states,
with mass depending on the radius of the compacti�ed direction. Dimensional
reduction corresponds to throwing away these massive modes and focusing solely
on the massless spectrum. For an excellent, readable, review of this technique,
see Section 7.1 of [4].

One way of thinking about dimensional reduction is to ask the question:
How do D-dimensional �elds look to someone living in d < D dimensions? In
terms of the examples we're dealing with, we want to know how the various
representations of SO(1, 4) (the graviton, vectors, and scalars) decompose in
terms of representations of SO(1, 2) (for Lorentzian signature) or SO(3) (for
Euclidean signature).

Let's take things one step at a time. Let x0 and x4 be our compacti�ed
directions, which can be either timelike or spacelike. Consider the case where
we �rst �reduce� over the x0 direction. We can consider how each of our SO(1, 4)
representations look in the 4-dimensional theory.

Clearly, if Φ is a singlet (scalar �eld) of SO(1, 4), it will also be a singlet of
SO(1, 3) or SO(4) (and, indeed, of the 3-dimensional versions thereof). So all
of our 5-dimensional scalars are 4-dimensional scalars.

If ΦM transforms as a vector under SO(1, 4), then we can decompose it as

ΦM = (Φ0,Φµ),

where Φ0 is a scalar in 4 dimensions and Φµ a vector. Likewise, if we want to
reduce again over x4, we can decompose Φµ as

Φµ = (Φm,Φ4).

Hence, we see that an SO(1, 4) vector decomposes into a vector and 2 scalars
of SO(1, 2) or SO(3).

If ΦMN transforms as a rank 2 symmetric tensor under SO(1, 4), then we
can decompose it as

ΦMN =

(
Φ00 Φ0µ

Φµ0 Φµν

)
,

which corresponds to a scalar (Φ00), a vector (Φ0µ), and a rank 2 symmetric
tensor (Φµν) of SO(1, 3) or SO(4). If we perform a further reduction over x4,
then we can decompose the vector representation as Φ0µ = (Φ04,Φ0m) as before.
The rank 2 symmetric representation further decomposes as

Φµν =

(
Φ44 Φ4m

Φm4 Φmn

)
.
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Hence, we see that the rank 2 symmetric representation of SO(1, 4) decom-
poses into 3 scalars, 2 vectors, and a rank 2 symmetric representation of SO(1, 2)
or SO(3).

Actually, there is a particularly nice way of writing the metric (the rank
2 symmetric tensor) which we will use in calculations: this is known as the
Kaluza-Klein ansatz, and is written as

ds2(5) = −ε1e2σ
(
dx0 +A0

)2 − ε2e2φ−σ (dx4 +B
)2

+ e−2φ−σds2(3). (3)

Here, σ, φ are the Kaluza-Klein scalars; A0 = A0
4dx

4 + A0
mdx

m and B =
Bmdx

m are 1-forms corresponding to the Kaluza-Klein vectors; and ds2(3) is the
metric on the 3-dimensional `transverse' space. The constants ε1,2 determine
whether the reductions over x0.4, respectively, are performed over a timelike
or spacelike direction. They take values +1 for timelike and −1 for spacelike
reductions.

In theory, then, we should be able to use this information to reduce our
original action (1) over x0 and x4, to obtain a 3-dimensional action consisting
of scalars, vectors, and a rank 2 symmetric tensor. Before we do this though,
there is one more important point regarding antisymmetric representations of
the Poincaré group. Namely, in D dimensions, a p-form is dual to a (D−p−2)-
form. The details to show this are presented in Section 7.8 of [2]. The idea,
though, is that a p-form Ap enters into the action through a (p + 1)-form �eld
strength Fp+1. The equations of motion read d ∗Fp+1 = 0, where ∗ denotes the
Hodge dual. This implies that, locally, we can write the (D−p−1)-form ∗Fp+1

as dAD−p−2, for some (D−p−2)-form AD−p−2, which we call the �dual� of Ap.
In particular, taking D = 3, p = 1, we see that 1-forms (i.e. vector �elds)

in 3 dimensions are dual to scalars. This means that we can replace all of our
3-dimensional vector �elds with scalar �elds in the �nal action.

3.3 The 3d action

The 3d action in terms of the real 5d variables.
We're now all set to follow through the steps in the calculation outlined

above, and reduce our theory over the two isometric directions. We won't do
anything explicitly here for sake of brevity (I have notes where it's done explicitly
if you're interested), but let's just write down the 3-dimensional Lagrangian that
we end up with, and then explain the notation.
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L̃3 = −ε1ĝij∂xi∂xj + ĝij∂y
i∂yj − (∂φ)2

+
1

4
e−4φε1

(
∂φ̃+ pI

←→
∂ sI

)2
+

1

12
e−2φε(cyyy)(∂p0)2

−1

3
e−2φε2(cyyy)ĝij

(
∂pi − xi∂p0

) (
∂pj − xj∂p0

)
+3e−2φε2(cyyy)−1

(
∂s0 + xi∂si −

1

6
(cxxx)∂p0 +

1

2
(cxx)i∂p

i

)2

−3

4
e−2φε(cyyy)−1ĝij

(
∂si −

1

2
(cxx)i∂p

0 + (cx)ik∂p
k

)
×
(
∂sj −

1

2
(cxx)j∂p

0 + (cx)jl∂p
l

)
. (4)

Let's identify how each of the �elds in (4) correspond to our original 5-
dimensional �elds. We have

yi ∼ eσhi, xi ∼ Ai0, pi ∼ Ai4 −Ai0A0
4, p0 ∼ A0

4. (5)

The dual scalars φ̃, s0, si are related to the 3-dimensional vector �elds Bm,
A0
m, and Aim respectively, but the explicit expressions are somewhat involved.

We'll write them down after we have truncated some of the �elds, below.
The coupling ĝij(y) is given by

ĝij(y) =
3

2

(
(cy)ij
cyyy

− 3

2

(cyy)i(cyy)j
(cyyy)2

)
, (6)

and we note �nally that the hypersurface constraint V̂(h) = 1 becomes V̂(y) =
6e3σ.

3.4 Consistent truncations

De�nition in general. Speci�c truncation for static, magnetic strings.
The action (4) looks a little unwieldy. We'd like to simplify our lives by only

considering �eld con�gurations where some subset of the scalars are switched
o�. However, we can't just switch o� scalars arbitrarily: we need to perform
what is known as a �consistent truncation�. The idea is that we can consistently
truncate (i.e. set to zero) a �eld if, when we set it to zero on some initial time
slice, it will remain zero on all future time slices. That is, we want the truncation
to commute (in a suitable sense) with the equations of motion.

For the solutions we're interested in, we want to be able to describe static
non-rotating magnetic black strings. This corresponds to a consistent truncation
where we set to zero the Kaluza-Klein 1-formsA0 and B, and the electric charges
Ai0 and Ai4. In terms of the Lagrangian (4) this corresponds to setting

xi = pi = s0 = p0 = φ̃ = 0.
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Simultaneously rede�ning

wi = e−φ−
3
2σyi, ξ = φ− 3

2
σ,

gives us the truncated 3-dimensional action

S3 =

ˆ
d3x
√
g

[
r

2
+ ĝij(w)∂wi∂wj − 1

8
ĝij(w)∂si∂sj −

1

4
(∂ξ)2

]
. (7)

We note too that we have the relations

ds2(5) = eξ+2σ
[
−ε1e−ξ(dx0)2 − ε2eξ(dx4)2

]
+ e−2(ξ+2σ)ds2(3), (8)

for the metric, and

hi = eξ+2σwi, F imn =
1

4
εmnpĝ

ij(w)∂psj , (9)

for the remaining �elds. We have at this point (implicitly) restricted to reduc-
tions which give rise to a Euclidean theory in 3 dimensions. Similar relations
would hold if we reduced to a Lorentzian spacetime, but such cases are unim-
portant for our purposes.

4 Geometry of the target space

Where we give some detail as to how the moduli space determines the types of
theories we can get.

Up until now, we have been interested solely in the geometry of our spacetime
(be it 5- or 3-dimensional). We'll now introduce a second type of geometrical
structure that is present in our theories: that of a scalar target space (or moduli
space). Let's take as our �rst example the original 5d action (1) and isolate the
part involving the scalar �elds hi

Sscalar = −3

4

ˆ
d5x
√
ĝ aij(h)∂Mh

i∂Mhj , (10)

where we recall that the indices i, j run over 1, . . . , nV + 1. The form of the
Lagrangian, where we have what looks like an ordinary scalar kinetic term, but
with coupling a function of the scalars, is called a �non-linear sigma model� for
historical pion-physics reasons.

If we work out the variation of (10) with respect to the �elds hi we �nd that
the resulting equations of motion read

�hi +
1

2
aij(h) (∂majn(h) + ∂namj(h)− ∂jamn(h)) ∂Mh

m∂Mhn = 0,

which we recognise as the equation for geodesic motion on a space with coor-
dinates hi and metric aij(h)! The space (M, a) is referred to by many names:
the scalar manifold, the target space, the moduli space. We will probably slip
in and out of using them all at some point.
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4.1 r-, c-, and q-maps

VMs to HMs. Maps between manifolds.
For theories of N = 2 supergravity coupled to vector or hypermultiplets, the

scalar manifolds which appear take on a rather particular form: they de�ne the
so-called �special geometries� which OV talked about in his recent seminar. For
a readable and fairly concise introduction, I'd recommend Section 20.3 of [2].
Here I'll just give a brief overview.

For the hypermultiplet sector of a theory (i.e. the manifold associated with
the hypermultiplet scalars) we always get a quaternionic or para-quaternionic
manifold. This decouples from the manifold of vector multiplets in the sense
that the total scalar manifold is a direct product.

The manifold associated with 5-dimensional vector multiplets5 is called �pro-
jective very special real�; that associated with 4-dimensional vector multiplets
is called �projective special Kähler.

Dimensional reduction induces various maps between the scalar manifolds
of these theories. Let's take a look at how this works.

Suppose we start with nV 5-dimensional N = 2 vector multiplets coupled to
supergravity. So we have nV real scalars which parametrise an nV -dimensional
projective special real manifold.

Under dimensional reduction from 5 to 4 dimensions, we get an extra nV +1
scalars from the 5-dimensional vectors (including the graviphoton) and one from
the graviton. This gives us a total of 2(nV + 1) scalars in the 4-dimensional
theory, which we can package into nV + 1 complex or para-complex6 �elds to
complete our nV + 1 4-dimensional vector multiplets. The scalar manifold in
this case is a very special (para-)Kähler manifold.

Hence, dimensional reduction from 5 to 4 dimensions induces a map from an
nV -dimensional very special real manifold to an nV +1-dimensional very special
(para-)Kähler manifold. This is the r-map.

Similarly, dimensional reduction of our nV + 1 4-dimensional vector mul-
tiplets to 3 dimensions gives (after dualising the vectors) 4(nV + 2) scalars
which can be combined into nV + 2 hypermultiplets. As we saw above, these
parametrise a (para-)quaternionic manifold.

Dimensional reduction from 4 to 3 dimensions, in general, induces a map
from special Kähler to special quaternionic manifolds, called the c-map. Reduc-
tion of those very special Kähler manifolds in the image of the r-map induces
a further map (the composition of the r- and c-maps) between very special real
and very special quaternionic manifolds, known as the q-map.

This subsection has, since it involves a slight digression from the main thread
of our subject, been regrettably brief, especially regarding the notion of `para'-
complex geometry. For more information on the r-map, see [5]; for information
on c-map, see [6]. The case of the supergravity q-map will be discussed at length

5When we restrict to global supersymmetry, replace `projective' with `a�ne'. See OV's
talk for details on the di�erence.

6We will get complex �elds if the reduction is performed over a spacelike direction, para-
complex if it's performed over a timelike direction.
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in a future publication.

5 Extremal black strings

Where we construct an extremal magnetic black string solution. Truncating a
further scalar. Equations of motion.

Now that we've met all of the important players, we should let them get
warmed up. To this end, we'll construct our �rst solution to the N = 2, d =
(1, 4) supergravity theory described by the action (1): the extremal magnetic
black string. For this, we truncate the scalar ξ from the action (7), metric ansatz
(8), and �elds (9), leaving us with an action

S3 =

ˆ
d3x
√
g

[
r

2
+ ĝij(w)∂wi∂wj − 1

8
ĝij(w)∂si∂sj

]
, (11)

and a metric ansatz

ds2(5) = e2σ
(
−ε1(dx0)2 − ε2(dx4)2

)
+ e−4σds2(3), (12)

where now the scalars wi are related to the hi as wi = e−2σhi. We will keep the
form of the transverse metric ds2(3) arbitrary for this example, which will allow
us to construct multi-centred extremal black strings.

The Einstein equations, and the equations of motion for the scalars wi and
dual scalars si are, respectively,

1

2
rmn + ĝij(w)

[
∂mw

i∂nw
j − 1

8
ĝik(w)∂msk ĝ

jl(w)∂msl

]
= 0,

ĝij(w)4wj +
1

2
(∂iĝjk)

[
∂wj∂wk − 1

8
ĝjl(w)∂sl ĝ

kr(w)∂sr

]
= 0,

∂m
(√
g ĝij(w)∂msj

)
= 0, (13)

where 4 denotes the Laplacian in the 3-dimensional transverse space. Our goal
now is to �nd some con�guration of the �elds gmn, w

i, si which satisfy (13).
This will give us an instanton solution to our 3-dimensional theory (11). This
can then be lifted to a solitonic solution of the original 5-dimensional theory
(1).

5.1 Generalized extremal instanton ansatz

Generalized EIA. Mention multi-centred solutions. Explicit form for spherically
symmetric.

One way of simplifying matters is to impose what is known as the generalized
extremal instanton ansatz (GEIA) on (13). Suppose there exists a constant
matrix Rij satisfying RT ĝR = ĝ. We can certainly choose R = ±I, but in
general there may be a number of other possible choices, depending on the model
we're interested in. Then, the GEIA relates the scalars wi and si through
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∂mw
i =

1√
8
Rij ĝ

jk(w)∂msk. (14)

We note now that, plugging this into (13), the equations of motion reduce
to

rmn = 0, 4wi = 0. (15)

In other words, the 3-dimensional transverse space is Ricci �at, and the wi

are harmonic functions Hi of the transverse coordinates.
Using (9) we can see that the �eld strength is given by

F imn =
1√
2
εmnp(R

−1)ij∂
pHj . (16)

whereas the scalars σ are given by V̂(H) = e−6σ. This allows us to write the
general form of an extremal magnetic black string solution to (1) as

ds2(5) = V̂(H)−
1
3 (−dt2 + dy2) + V̂(H)

2
3 ds2(3), (17)

where we have denoted by (t, y) the timelike and spacelike directions of the
string's worldvolume.

Before moving on, let's restrict attention to the case where the transverse
space is spherically symmetric,

ds2(3) = dρ2 + ρ2dΩ2
2.

In this case, taking into account (16), we see that we can write the harmonic
functions as

Hi(ρ) = hi∞ +
Rij p̃

j

ρ
, (18)

where we have introduced the physical parameters (moduli) hi∞, corresponding
to the asymptotic value of the scalars hi(ρ), and p̃i, corresponding to the physical
magnetic charges.

We note that, in order that we really are describing a regular black string
with horizon at ρ = 0, there should be no zeroes in V̂(H) for ρ > 0. In terms of
the moduli, this tells us that we must have

sign(hi∞) = sign(Rij p̃
j). (19)

We will use this condition in the following subsection, where we focus on a
particular choice of the prepotential V̂(h).
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5.2 Example: ST 2 model

Choice of prepotential. 1-dimensional moduli space. Choices of extremal instan-
ton ansatz.

Let us now turn our attention to a speci�c model, i.e. a speci�c choice of
prepotential V̂(h). We'll consider the so-called ST 2 model, which describes the
1-dimensional special real manifold h0(h1)2 = 1. That is, we take as prepotential

V̂(h0, h1) = h0(h1)2.

In order for the hypersurface to be well-de�ned, we see that we need h0 > 0.
There are then two disjoint patches in which h1 can take values, namely {h1 > 0}
and {h1 < 0}. Working out the associated metric ĝij , we �nd

ĝij ∼
(

(h1)4 0
0 2h0

)
.

It turns out that there are 4 possible �R-matrices� satisfying RT ĝR = ĝ,
namely R = ±R(σ), where

R(σ) =

(
1 0
0 σ

)
,

for σ = ±1.
For each choice of R-matrix we have a di�erent �eld con�guration. We will

concentrate on those extremal solutions for which the 3-dimensional transverse
space is spherically symmetric. In this case, the harmonic functions which
characterise the solution are given by (18).

5.3 Aside: Tension and central charge

Calculating tension. Calculating central charge.
Let's take a brief hiatus and consider how we should go about calculating the

tension (mass per unit length) and central charge of our solutions. We follow
[7].

Let x0,4 be the worldvolume coordinates of the black string, and consider
the asymptotic metric in these directions, namely

gab = ηab +
cab
ρ

+O(ρ−2),

for some constants cab. The tension is then given by

T :=
1

4

(
c00 −

1

4
ηabcab

)
=

1

2
c00 −

1

4
c44. (20)

In the case of the metric (17) (where x0 = t and x4 = y) and the ST 2 model
we're considering, this reads

T =
1

4

[
(h1∞)2(Rp̃)0 + 2h0∞h

1
∞(Rp̃)1

]
. (21)
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For the central charge, we have the expression [7]

Z = cijkh
i
∞h

j
∞p̃

k =
1

3

[
(h1∞)2p̃0 + 2h0∞h

1
∞p̃

1
]
. (22)

5.4 BPS/non-BPS regions of moduli space

Identifying BPS/non-BPS regions of moduli space. Choices of R-matrix.
We are now in a position to understand the rôle of the R-matrix in our

solutions. Let's go through each choice one-by-one and see what we �nd. We
have to bear in mind two things: the hypersurface should be well-de�ned (h0∞ >
0) and the solution should be regular (19).

For the case R = +R1, we have p̃0 > 0 and sign(h1∞) = sign(p̃1). The
tension is given by

T =
1

4

[
(h1∞)2p̃0 + 2h0∞h

1
∞p̃

1
]
.

For the case R = −R1, we have p̃0 < 0 and sign(h1∞) = −sign(p̃1). The
tension is given by

T = −1

4

[
(h1∞)2p̃0 + 2h0∞h

1
∞p̃

1
]
.

For the case R = +R−1, we have p̃0 > 0 and sign(h1∞) = −sign(p̃1). The
tension is given by

T =
1

4

[
(h1∞)2p̃0 − 2h0∞h

1
∞p̃

1
]
.

For the case R = −R−1, we have p̃0 < 0 and sign(h1∞) = sign(p̃1). The
tension is given by

T = −1

4

[
(h1∞)2p̃0 − 2h0∞h

1
∞p̃

1
]
.

We notice that, for R = ±R1, the tension and central charge satisfy the BPS
condition T = 3

4 |Z|, whereas this does not hold forR = ±R−1, which correspond
to non-BPS states. This is a generic feature: taking an R-matrix proportional
to the identity produces extremal BPS states, whilst R 6= ±I corresponds to
extremal non-BPS states.

In terms of the moduli space, then, we have the following situation. If
the magnetic charges p̃0 and p̃1 have the same sign, then the �BPS region� is
{h1∞ > 0}, whilst the �non-BPS region� is {h1∞ < 0}. If p̃0 and p̃1 are of opposite
sign, then the BPS and non-BPS regions are exchanged.

6 Non-extremal black strings

Where we construct a non-extremal magnetic black string solution.
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Now that we're all warmed-up and have a better idea of the methodology
for constructing solutions, let's continue to the main act: the construction of
non-extremal magnetic black string solutions to N = 2, d = (1, 4) supergravity
coupled to vector multiplets. Although the work here is new, it is a fairly
simple extension of [8], where they consider the case of non-extremal black hole
solutions.

6.1 Spherically-symmetric line element

Spherically symmetric line element in 3d. Coordinates.
For the non-extremal solutions, we're going to be concentrating on those

for which the transverse space is spherically symmetric. Moreover, we want to
impose that our scalars wi, si, ξ depend only on a single radial coordinate. The
general ansatz for a spherically symmetric line element in 3 dimensions is

ds2(3) = e4A(τ)dτ2 + e2A(τ)
(
dθ2 + sin2 θdϕ2

)
. (23)

The coordinate τ is an a�ne coordinate on the transverse space. The asymp-
totic region is at τ → 0, whereas the outer horizon is situated at τ → ∞. We
can solve the Einstein equations derived from the action (7) with the metric
ansatz (23) to �nd

ds2(3) =
c4

sinh4(cτ)
dτ2 +

c2

sinh2(cτ)
dΩ2

2, (24)

where c is a constant (which we will later identify as a non-extremality param-
eter) which enters into the �Hamiltonian constraint7�

c2 + ĝij(w)ẇiẇj − 1

8
ĝij(w)ṡiṡj −

1

4
ξ̇2 = 0, (25)

where ẇ, etc. denotes di�erentiation with respect to τ .
It is useful to introduce the so-called isotropic coordinate τ → ρ with

ρ =
cecτ

sinh(cτ)
, (26)

in which the line element (24) takes the form

ds2(3) = dρ2 +W (ρ)ρ2dΩ2
2, (27)

where

W (ρ) = 1− 2c

ρ
= e−2cτ . (28)

So far we have only dealt with the Einstein equations for our theory. This
has determined the form of the 3-dimensional transverse metric up to some

7This is just the ττ component of the Einstein equations, which is considered a constraint
in the so-called �Hamiltonian formalism�.
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constant c. We still need to solve the equations of motion for the remaining
scalar �elds wi, si, ξ subject to the Hamiltonian constraint (25). This we will
do next.

6.2 Constructing the instanton solutions

Solving equations of motion for the scalars. Relation of scalars to physical de-
grees of freedom, i.e. charges, moduli, non-extremality parameter. Algebraic
constraint.

Let us now set about solving the equations of motion for the scalar �elds.
For ξ(τ), this reads ξ̈ = 0, which is solved by ξ(τ) = aτ + b. Inserting this into
(8), we see that asymptotic �atness (recall that this corresponds to the τ → 0
limit) forces us to take b = 0.

Let's now think about the near-horizon region (τ →∞). We note that, for a
black string, the horizon is of the form R×S2, where the S2 factor is described
by the dΩ2

2 piece in (24) and the R piece is the spatial direction along the
worldvolume of the string. This can correspond to either the dx0 or dx4 piece
in (8) depending on whether we have performed �rst a reduction over space or
time. In either case, the condition on ξ(τ) is that, when we integrate over the
S2 and some �nite piece of R to �nd the size of (a section of) the horizon, we
should get a �nite answer. This then imposes that

ξ(τ) = ε1cτ. (29)

Let us now move on to the dual scalars si(τ). The equations of motion for
these are solved by

ṡi =
√

8 ĝij(w)p̃j , (30)

where the factor of
√

8 is chosen for later convenience and p̃i are constant.
Relating this back to the �eld strengths, we �nd the only non-zero component
to be

F iθϕ =
1√
2
ε1p̃

i sin θ, (31)

which identi�es the p̃i as the physical magnetic charges of the string.
Before we move on to consider the equations of motion for wi, let us update

ourselves on the current form of the Hamiltonian constraint (25), which now
reads

3

4
c2 + ĝij(w)

(
ẇiẇj − p̃ip̃j

)
= 0. (32)

Let's now move onto the equations of motion for wi, which read

ĝijẅ
j +

1

2
∂iĝjk

(
ẇjẇk − p̃j p̃k

)
= 0. (33)
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Contracting this with wi and using various identities of special geometry, we
arrive at the condition

ĝij(w)wi
(
ẅj − c2wj

)
= 0, (34)

which can be solved by

ẅi − c2wi = Xi, (35)

for some Xi satisfying ĝij(w)wiXj = 0. For simplicity, we will look for solutions
with Xi = 0. This will enable us to �nd explicit solutions for wi(τ) for the so-
called �block diagonal� models. It is possible that, by taking Xi 6= 0 we can �nd
solutions for a more general class of models, but this work is yet to be carried
out.

For the class of solutions with Xi = 0, (35) is solved by

wi(τ) = Ai cosh(cτ) +
Bi

c
sinh(cτ), (36)

where we have chosen the coe�cients in such a way as to recover the solution
for the case of extremal spherically symmetric black strings, wi(τ) = Ai +Biτ ,
in the extremal limit c→ 0.

We can write the solution (36) in terms of the isotropic coordinate ρ intro-
duced in (26) to �nd

wi(ρ) =

(
Ai +

pi

ρ

)
W−

1
2 := Hi(ρ)W−

1
2 , (37)

where we have used the de�nition of the function W (ρ) given in (28), and
introduced pi := Bi − cAi. At this point it's convenient also to introduce
p̄i := pi + 2cAi. We will see later on that pi and p̄i are related to the values of
the scalar �elds hi(ρ) at the inner and outer horizons respectively.

Using (9), we see that

eξ+2σ = V̂(w)−
1
3 = V̂(H)−

1
3W

1
2 ,

so

hi(ρ) = V̂(H)−
1
3Hi(ρ). (38)

This tells us that, taking the asymptotic limit, we should have Ai = hi∞.
We should also consider the limits ρ → 2c and ρ → 0, which correspond

to the outer and inner horizons respectively. We see that, in these cases, the
scalars hi(ρ) satisfy

hi −−−→
ρ→2c

(
V̂(p̄)(2c)−3

)− 1
3 p̄i

2c
= V̂(p̄)−

1
3 p̄i,

and
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hi −−−→
ρ→0

(
V̂(p)(ρ)−3

)− 1
3 pi

ρ
= V̂(p)−

1
3 pi.

This is the same �dressed attractor behaviour� as [8], and motivates calling
p̄i and pi the outer and inner �horizon charges� respectively.

We still need to make sure that this �eld con�guration satis�es the Hamil-
tonian constraint (32), which now corresponds to choosing constants pi, p̄i =
pi + 2chi∞, c such that

ĝij(w)
(
p̃ip̃j − pip̄j

)
= 0. (39)

6.3 Solution for diagonal models

Explicit relation to physical charges. Instanton solution. Lifting to 5d black
string.

Although we're more interested in the general structure of non-extremal
black strings, it wouldn't hurt to do things explicitly for a particularly simple
class of models so that we can see how everything comes together.

Let's consider the so-called �diagonal models�, where ĝij is diagonal. Then
(39) is solved by taking

pi = −chi∞ ±
√

(p̃i)2 + c2(hi∞)2,

for each i = 1, . . . , nV + 1. The sign must be chosen such that the solution is
regular for ρ > 0, which corresponds to choosing the positive sign for hi∞ > 0
and the negative sign for hi∞ < 0.

Bringing everything together, we �nd

ds2(5) = V̂(H)−
1
3

(
−W dt2 + dy2

)
+ V̂(H)

2
3

(
dρ2

W
+ ρ2dΩ2

2

)
, (40)

with

Hi(ρ) = hi∞ +
pi

ρ
, pi = −chi∞ ±

√
(p̃i)2 + c2(hi∞)2, (41)

and

F i =
1√
2
p̃i sin θ dθ ∧ dϕ. (42)

A similar analysis can be performed for the block diagonal models considered
in [8].
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7 Relation between extremal and non-extremal

solutions

Where we elucidate certain relationships between the non-extremal and extremal
BPS/non-BPS black strings.

So we've now managed to describe both extremal and non-extremal magnetic
black string solutions to our N = 2, d = (1, 4) supergravity theory coupled to
nV vector multiplets. On the extremal side, we've seen that, depending on
the model (i.e. choice of prepotential) we can have both BPS and non-BPS
solutions.

On the non-extremal side, everything is �xed except for the relation between
the horizon charges pi and the physical magnetic charges p̃i, which is encoded
in the Hamiltonian constraint (39).

Let's consider the extremal c→ 0 limit of (39). In this limit, the inner and
outer horizons coalesce, and we have p̄i = pi, so that (39) becomes

ĝij(w)p̃ip̃j = ĝij(w)pipj .

This can be solved by taking pi = Rij p̃
j for any matrix R satisfying RT ĝR =

ĝ, which is precisely the relation between the horizon charges pi and magnetic
charges p̃i for the extremal case. Thus, in a sense, we can say that the extremal
BPS and extremal non-BPS regions of moduli space can be reached by taking
a suitable extremal limit of the non-extremal black string solution.

8 Small black holes in 4 dimensions

Small black holes as time-lifts of extremal instantons.
Before we �nish, there's just enough room to look at a further class of solution

which we get for free in this picture: a 4-dimensional small black hole.
Suppose we start o� by reducing our original theory �rst over space and then

over time. We have been able to �nd both extremal and non-extremal instanton
solutions to the corresponding 3-dimensional Euclidean theory.

Take one of these extremal solutions and lift it over the timelike direction.
This gives us a solitonic solution to the 4-dimensional Lorentzian theory. In
particular, we �nd the 4-dimensional line element

ds2SBH = −V̂(H)−
1
2 dt2 + V̂(H)

1
2 ds2(3). (43)

In the case where the 3-dimensional transverse space is spherically symmet-
ric, have a black hole with horizon at ρ → 0. However, calculating the area of
this horizon, we see that it vanishes. This identi�es (43) as a so-called �small
black hole�.

9 Generalisations and future work

Generalized prepotentials.
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Throughout the work so far we have restricted ourselves to prepotentials
V̂(h) which are polynomials of degree 3, described by coe�cients cijk. This fact
ensures that our action (1) is gauge invariant and supersymmetric [9]. However,
we can also consider [10] a non-supersymmetric action described by a generalized
prepotential which we take to be a polynomial of degree p > 3. The subtlety
here is that we then lose gauge invariance of the Chern-Simons part of the
action (1), since the coe�cient multiplying it will be the third derivative of the
prepotential and therefore non-constant. This can be avoided if we consider
purely-electric or purely-magnetic theories, for which the Chern-Simons term
doesn't contribute.

We can then follow the same procedure as above and construct non-SUSY
magnetic black string solutions, which have a similar form to those found above.
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