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“Patience is bitter, but its fruit is sweet.”
Jean-Jacques Rousseau
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Motivation

To incorporate GRAVITY with the Standard Model gauge
group SU(3)× SU(2)× U(1).
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Always the 16 of SO(10)

SU(3) SU(2)

Q � �
u � 1

d � 1

L 1 �
e 1 1

ν 1 1
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Why (Bosonic) String Theory Is Not The Whole Story?

Two major setbacks

The ground state of the spectrum always contains a tachyon.
As a consequence, the vacuum is unstable.

Does not contain space-time fermions.
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Why Superstrings?

Supersymmetry is the symmetry that interchanges bosons and
fermions.
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Heterotic Strings

Heterotic strings are hybrid strings with either

left-moving sector being supersymmetric and right-moving
sector being bosonic or

left-moving sector being bosonic and right-moving sector
being supersymmetric.

There are two heterotic string theories, one associated to the
gauge group

E8 × E8

and the other to
SO(32)

or more precisely
Spin(32)/Z2

which is the double cover of SO(32).
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Lattice

A lattice is defined as a set of points in a vector space V lets say
R(p,q) with Lorentzian inner product of the form

Λ =

{ m∑
i=1

niei , ni ∈ Z
}

where m = p + q and {ei} are the basis vectors which form the
canonical basis of Λ. The metric on this lattice which contains
information about the lengths and angles between the basis vectors
is defined as

gij = ei · ej .
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An Example
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The Dual Lattice

The dual lattice is given by

Λ∗ =

{ m∑
i=1

nie
∗
i , ni ∈ Z

}
where {e∗i } is the canonical basis of the dual lattice.
The basis vectors of the dual lattice are chosen in a such a way as
to satisfy the condition

e∗i · ej = δij .

he metric of the dual lattice is given by

g∗
ij = e∗i · e∗j

which is simply the inverse of gij .
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The Different Kinds

A lattice is called integral if v · ω ∈ Z ∀ v , ω ∈ Λ.

A lattice is called even if Λ is integral and v2 is even for all
v ∈ Λ.

A lattice is called self-dual if Λ = Λ∗.

In 16 dimensions, there are only two even self dual lattices.
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The Basic Aim

The Goal of the Free Fermionic Construction

4 Flat Space-Time Dimensions

N = 1 SUSY

3 Chiral Generations
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The Free Fermionic Construction

Properties

Conformally Invariant

Decoupling of Left & Right Moving Modes

D = 4 Theory

Result

CL = −26 + 11 + D + D
2 +

NfL
2 = 0

=⇒ 18 left-moving real fermions

CR = −26 + D +
NfR
2 = 0

=⇒ 44 right-moving real fermions

Johar M. Ashfaque & H. Sonmez et. al. Semi-Realistic Heterotic-String Vacua



The Free Fermionic Construction

Partition function is used to include all physical states

Z =
∑
α,β

C

(
α

β

)
Z [α, β]

Taking the one-loop partition function transforms the
worldsheet into a torus.

It is around the two non-contractible loops of this torus that
the fermions on being parallel transported will pick up a phase.
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The Free Fermionic Construction

α =
{
ψ1,2
µ , χi , y i , ωi |y i , ωi , ψ

1,..,5
, η1,2,3, φ

1,..,8
}

where i = 1, ..., 6

Left-movers

Xµ
L , µ = 1, 2 2 transverse coordinates

ψµ
L , µ = 1, 2 The fermionic partners

Ωj , j = 1, .., 18 18 internal real fermions

Right-movers

Xµ
R , µ = 1, 2 2 transverse coordinates

Ω
j
, j = 1, .., 44 44 internal real fermions
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SU(2)6 - The 18 Dimensional Semi-Simple Lie Algebra

SUSY is non-linearly realized. The supercharge is

TF = ψµ∂Xµ + fIJKχ
IχJχK = ψµ∂Xµ +

∑
I

χI y IωI

where fIJK are the structure constants of a semi-simple Lie group
G with 18 generators.
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The Space-Time Spin Statistics Index

δα =

{
1⇔ α(ψµ1,2) = 0

−1⇔ α(ψµ1,2) = 1
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The Free Fermionic Construction

The ABK Rules∑
i mibi = 0

Nij · bi · bj =0 mod 4
Ni · bi · bi =0 mod 8
1 ∈ Ξ, (Ξ is the Abelian additive group)
Even number of fermions

One-Loop Phases

C

(
bi
bj

)
= ±1 or ±i

GSO Projection

e iπbi ·Fα |s〉α = δαC

(
α

bi

)∗

|s〉α

Virasoro Level-Matching Condition

M2
L = − 1

2 +
α2

L

8 +
∑

vL = −1 +
α2

R

8 +
∑

vR = M2
R
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The Frequency of Fermions

The fermions transform under the parallel transport as

f → −e iπα(f )f

their frequency being given by

νf =
1 + α(f )

2
.

Due to the periodicity of the phases we write the frequency more
precisely as

νf =
1 + α(f )

2
+ F

Then the U(1) charge is given by

Qν(f ) = ζ(0, 1−ν) = −B1(1−ν) = ν− 1

2
=

1

2
α(f )+F , B1 = +

1

2
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An Example: The NAHE Set

The NAHE set is the set of basis vectors

B = {1,S,b1,b2,b3}

where

1 = {ψ1,2
µ , χ1,...,6, y1,...,6, ω1,...,6|ȳ1,...,6, ω̄1,...,6, ψ̄1,...,5, η̄1,2,3, φ̄1,...,8},

S = {ψ1,2
µ , χ1,...,6},

b1 = {ψ1,2
µ , χ1,2, y3,...,6|ȳ3,...,6, ψ̄1,...,5, η̄1},

b2 = {ψ1,2
µ , χ3,4, y1,2, ω5,6|ȳ1,2, ω̄5,6, ψ̄1,...,5, η̄2},

b3 = {ψ1,2
µ , χ5,6, ω1,...,4|ω̄1,...,4, ψ̄1,...,5, η̄3}.
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The NAHE: The Space-Time Spin Statistics Index

δ1 = δS

= δb1
= δb2
= δb3
= −1
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α · β = (#L−#R)nC(α ∩ β)
#L > #R = +, #L < #R = −, #L 6= #R
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α + β = α ∪ β − α ∩ β

For example, consider

1 + b1 + b2 + b3

the union is

1 = {ψ1,2
µ , χ1,...,6, y1,...,6, ω1,...,6|ȳ1,...,6, ω̄1,...,6, ψ̄1,...,5, η̄1,2,3, φ̄1,...,8}

Now subtract, b1, b2 and b3

1 = {6ψ1,2
µ , /χ

1,...,6, /y
1,...,6, /ω1,...,6|/̄y1,...,6, 6 ω̄1,...,6,6 ψ̄1,...,5,6 η̄1,2,3, φ̄1,...,8}

So,
1 + b1 + b2 + b3 = {φ1,...,8} = ζ
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The NAHE: The ABK Rules Obeyed

1 · 1 = −12⇒ 0 mod 8

S · S = +4⇒ 0 mod 8

b1 · b1 = −4⇒ 0 mod 8

b2 · b2 = −4⇒ 0 mod 8

b3 · b3 = −4⇒ 0 mod 8

1 · S = +4⇒ 0 mod 4

1 · b1 = −4⇒ 0 mod 4

1 · b2 = −4⇒ 0 mod 4

1 · b3 = −4⇒ 0 mod 4

Johar M. Ashfaque & H. Sonmez et. al. Semi-Realistic Heterotic-String Vacua



The NAHE: The ABK Rules Obeyed

S · b1 = +2⇒ 0 mod 4

S · b2 = +2⇒ 0 mod 4

S · b3 = +2⇒ 0 mod 4

b1 · b2 = −4⇒ 0 mod 4

b1 · b3 = −4⇒ 0 mod 4

b2 · b3 = −4⇒ 0 mod 4
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Summarise As

1 · 1 = −12
1 · b1 = −4
S · S = 4
S · 1 = 4
S · b1 = 2

bi · 1 = −4, i = j = 1, 2, 3
bi · S = 2, i = j = 1, 2, 3
bi · bj = −4, i = j = 1, 2, 3
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The NAHE: The Basis {1}
The Non-Supersymmetric Case

Ξ = {NS , 1}

The GSO coefficients in this case is

c

(
NS

NS

)
= 1, c

(
NS

1

)
= −1, c

(
1

NS

)
= −1, c

(
1

1

)
= −1

By the Virasoro level-matching condition the sector 1 does contain
any massless states. The only sector containing the massless states
is the Neveu-Schwarz sector.
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The NAHE: The Basis {1,S}
SUSY

Ξ = {NS , 1 + S , 1,S}

( 1 S

1 ±1 1
S 1 1

)
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The NAHE: The Basis {1,S,b1}

Ξ = {NS , 1 + S , 1 + b1,S + b1, 1 + S + b1, 1,S , b1}
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The NAHE: The Basis {1,S,b1,b2}

Ξ = {NS , 1 + S , 1 + b1, 1 + b2,S + b1, S + b2, b1 + b2, 1 + S + b1,

1 + S + b2, 1 + b1 + b2,S + b1 + b2,

1 + S + b1 + b2, 1,S , b1, b2}
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The NAHE: The Basis {1,S,b1,b2,b3}

Ξ = {NS , 1 + S , 1 + b1, 1 + b2, 1 + b3,S + b1, S + b2, S + b3,

b1 + b2, b1 + b3, b2 + b3, 1 + S + b1, 1 + S + b2, 1 + S + b3,

1 + b1 + b2, 1 + b1 + b3, 1 + b2 + b3,S + b1 + b2,S + b1 + b3,

S + b2 + b3, b1 + b2 + b3, 1 + S + b1 + b2, 1 + S + b1 + b3,

1 + S + b2 + b3, ζ = 1 + b1 + b2 + b3,

S + b1 + b2 + b3, 1 + S + b1 + b2 + b3, 1,S , b1, b2, b3}
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The NAHE: ζ

ζ = 1 + b1 + b2 + b3

enhances the SO(16)→ E8 as it contains[(
8

0

)
+

(
8

2

)
+

(
8

4

)
+

(
8

6

)
+

(
8

8

)]
= 128 states.

The adjoint of SO(16) has 120 states.

120 + 128⇒ dimE8
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The NAHE: The Gauge Group

SO(44)

��
SO(10)× E8 × SO(6)3

with
N = 4

��
N = 2

��
N = 1
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The Various SO(10) Breakings

SO(10)

α

��

α+β // SU(5)× U(1)

SO(6)× SO(4)

β
��

H. Sonmez (World Expert)

OO

SU(3)C × U(1)C × SU(2)L × U(1)L

SO(10)

α+β+γ
��

SU(3)C × U(1)C × SU(2)L × SU(2)R
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What The Future Holds???

Je Ne Sais Pas
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THANK YOU!!!
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