

# Semi-Realistic Heterotic-String Vacua 

Johar M. Ashfaque \& H. Sonmez et. al.

String Theory Seminar May 2015
"Patience is bitter, but its fruit is sweet."
Jean-Jacques Rousseau

## Content

- Motivation
- Free Fermionic Construction
- Non-Supersymmetric Tachyon Free Model
- Results
- Observations \& Problems


## Motivation

- To incorporate GRAVITY with the Standard Model gauge group $S U(3) \times S U(2) \times U(1)$.


## Always the 16 of $S O(10)$

|  | $S U(3)$ | $S U(2)$ |
| :---: | :---: | :---: |
| Q | $\square$ | $\square$ |
| u | $\square$ | 1 |
| d | $\bar{\square}$ | 1 |
| L | 1 | $\square$ |
| e | 1 | 1 |
| $\nu$ | 1 | 1 |

## Why (Bosonic) String Theory Is Not The Whole Story?

Two major setbacks

## Why (Bosonic) String Theory Is Not The Whole Story?

Two major setbacks

- The ground state of the spectrum always contains a tachyon. As a consequence, the vacuum is unstable.


## Why (Bosonic) String Theory Is Not The Whole Story?

Two major setbacks

- The ground state of the spectrum always contains a tachyon. As a consequence, the vacuum is unstable.
- Does not contain space-time fermions.


## Why Superstrings?

Supersymmetry is the symmetry that interchanges bosons and fermions.

## Heterotic Strings

Heterotic strings are hybrid strings with either

## Heterotic Strings

Heterotic strings are hybrid strings with either

- left-moving sector being supersymmetric and right-moving sector being bosonic or


## Heterotic Strings

Heterotic strings are hybrid strings with either

- left-moving sector being supersymmetric and right-moving sector being bosonic or
- left-moving sector being bosonic and right-moving sector being supersymmetric.


## Heterotic Strings

Heterotic strings are hybrid strings with either

- left-moving sector being supersymmetric and right-moving sector being bosonic or
- left-moving sector being bosonic and right-moving sector being supersymmetric.
- There are two heterotic string theories, one associated to the gauge group

$$
E_{8} \times E_{8}
$$

and the other to

$$
S O(32)
$$

or more precisely

$$
\operatorname{Spin}(32) / \mathbb{Z}_{2}
$$

which is the double cover of $S O(32)$.

A lattice is defined as a set of points in a vector space $\mathcal{V}$ lets say $\mathbb{R}^{(p, q)}$ with Lorentzian inner product of the form

$$
\Lambda=\left\{\sum_{i=1}^{m} n_{i} e_{i}, n_{i} \in \mathbb{Z}\right\}
$$

where $m=p+q$ and $\left\{e_{i}\right\}$ are the basis vectors which form the canonical basis of $\Lambda$. The metric on this lattice which contains information about the lengths and angles between the basis vectors is defined as

$$
g_{i j}=e_{i} \cdot e_{j} .
$$

## An Example



The dual lattice is given by

$$
\Lambda^{*}=\left\{\sum_{i=1}^{m} n_{i} e_{i}^{*}, n_{i} \in \mathbb{Z}\right\}
$$

where $\left\{e_{i}^{*}\right\}$ is the canonical basis of the dual lattice.
The basis vectors of the dual lattice are chosen in a such a way as to satisfy the condition

$$
e_{i}^{*} \cdot e_{j}=\delta_{i j}
$$

he metric of the dual lattice is given by

$$
g_{i j}^{*}=e_{i}^{*} \cdot e_{j}^{*}
$$

which is simply the inverse of $g_{i j}$.

- A lattice is called integral if $v \cdot \omega \in \mathbb{Z} \forall v, \omega \in \Lambda$.
- A lattice is called even if $\Lambda$ is integral and $v^{2}$ is even for all $v \in \Lambda$.
- A lattice is called self-dual if $\Lambda=\Lambda^{*}$.
- In 16 dimensions, there are only two even self dual lattices.

The Goal of the Free Fermionic Construction

- 4 Flat Space-Time Dimensions
- $N=1$ SUSY
- 3 Chiral Generations

Properties

- Conformally Invariant
- Decoupling of Left \& Right Moving Modes
- $\mathrm{D}=4$ Theory

Result

> - $C_{L}=-26+11+D+\frac{D}{2}+\frac{N_{f_{L}}}{2}=0$
> $\Longrightarrow 18$ left-moving real fermions

- $C_{R}=-26+D+\frac{N_{t_{R}}}{2}=0$
$\Longrightarrow 44$ right-moving real fermions


## The Free Fermionic Construction

- Partition function is used to include all physical states

$$
\mathbf{Z}=\sum_{\alpha, \beta} C\binom{\alpha}{\beta} \mathbf{Z}[\alpha, \beta]
$$

- Taking the one-loop partition function transforms the worldsheet into a torus.


It is around the two non-contractible loops of this torus that the fermions on being parallel transported will pick up a phase.

The Free Fermionic Construction

$$
\alpha=\left\{\psi_{\mu}^{1,2}, \chi^{i}, y^{i}, \omega^{i} \mid \bar{y}^{i}, \bar{\omega}^{i}, \bar{\psi}^{1, . ., 5}, \bar{\eta}^{1,2,3}, \bar{\phi}^{1, . ., 8}\right\}
$$

where $i=1, \ldots, 6$

$$
\alpha=\left\{\psi_{\mu}^{1,2}, \chi^{i}, y^{i}, \omega^{i} \mid \bar{y}^{i}, \bar{\omega}^{i}, \bar{\psi}^{1, . ., 5}, \bar{\eta}^{1,2,3}, \bar{\phi}^{1, . ., 8}\right\}
$$

where $i=1, \ldots, 6$

- Left-movers
$\begin{array}{lll}\text { - } X_{L}^{\mu}, & \mu=1,2 & 2 \text { transverse coordinates } \\ \text { - } \psi_{L}^{\mu}, & \mu=1,2 & \text { The fermionic partners } \\ \text { - } \Omega^{j}, & j=1, . ., 18 & 18 \text { internal real fermions }\end{array}$

$$
\alpha=\left\{\psi_{\mu}^{1,2}, \chi^{i}, y^{i}, \omega^{i} \mid \bar{y}^{i}, \bar{\omega}^{i}, \bar{\psi}^{1, . ., 5}, \bar{\eta}^{1,2,3}, \bar{\phi}^{1, . ., 8}\right\}
$$

where $i=1, \ldots, 6$

- Left-movers
- $X_{L}^{\mu}$,

$$
\mu=1,2
$$

- $\psi_{L}^{\mu}$,
2 transverse coordinates

$$
\mu=1,2
$$

The fermionic partners
$j=1, . ., 18$

$$
18
$$

$$
\pi
$$

$$
18 \text { internal real fermions }
$$

- Right-movers
- $X_{R}^{\mu}$,
$\mu=1,2$
2 transverse coordinates
- $\bar{\Omega}^{j}$,
$j=1, . ., 44$
44 internal real fermions


## $S U(2)^{6}$ - The 18 Dimensional Semi-Simple Lie Algebra

SUSY is non-linearly realized. The supercharge is

$$
T_{F}=\psi^{\mu} \partial X_{\mu}+f_{I J K} \chi^{\prime} \chi^{J} \chi^{K}=\psi^{\mu} \partial X_{\mu}+\sum_{I} \chi^{\prime} y^{\prime} \omega^{\prime}
$$

where $f_{I J K}$ are the structure constants of a semi-simple Lie group $G$ with 18 generators.

The Space-Time Spin Statistics Index

$$
\delta_{\alpha}=\left\{\begin{array}{c}
1 \Leftrightarrow \alpha\left(\psi_{1,2}^{\mu}\right)=0 \\
-1 \Leftrightarrow \alpha\left(\psi_{1,2}^{\mu}\right)=1
\end{array}\right.
$$

- The ABK Rules
- $\sum_{i} m_{i} b_{i}=0$
- $N_{i j} \cdot b_{i} \cdot b_{j}=0 \bmod 4$
- $N_{i} \cdot b_{i} \cdot b_{i}=0 \bmod 8$
- $1 \in$ ミ, (三 is the Abelian additive group)
- Even number of fermions
- One-Loop Phases
- $C\binom{b_{i}}{b_{j}}= \pm 1$ or $\pm i$
- GSO Projection
- $e^{i \pi b_{i} \cdot F_{\alpha}}|s\rangle_{\alpha}=\delta_{\alpha} C\binom{\alpha}{b_{i}}^{*}|s\rangle_{\alpha}$
- Virasoro Level-Matching Condition
- $M_{L}^{2}=-\frac{1}{2}+\frac{\alpha_{L}^{2}}{8}+\sum v_{L}=-1+\frac{\alpha_{R}^{2}}{8}+\sum v_{R}=M_{R}^{2}$

The fermions transform under the parallel transport as

$$
f \rightarrow-e^{i \pi \alpha(f)} f
$$

their frequency being given by

$$
\nu_{f}=\frac{1+\alpha(f)}{2} .
$$

Due to the periodicity of the phases we write the frequency more precisely as

$$
\nu_{f}=\frac{1+\alpha(f)}{2}+F
$$

Then the $U(1)$ charge is given by
$Q_{\nu}(f)=\zeta(0,1-\nu)=-B_{1}(1-\nu)=\nu-\frac{1}{2}=\frac{1}{2} \alpha(f)+F, \quad B_{1}=+\frac{1}{2}$

## An Example: The NAHE Set

The NAHE set is the set of basis vectors

$$
B=\left\{\mathbb{1}, \mathbf{S}, \mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}, \mathbf{b}_{3}\right\}
$$

where

$$
\begin{aligned}
\mathbb{1} & =\left\{\psi_{\mu}^{1,2}, \chi^{1, \ldots, 6}, y^{1, \ldots, 6}, \omega^{1, \ldots, 6} \mid \bar{y}^{1, \ldots, 6}, \bar{\omega}^{1, \ldots, 6}, \bar{\psi}^{1, \ldots, 5}, \bar{\eta}^{1,2,3}, \bar{\phi}^{1, \ldots, 8}\right\} \\
\mathbf{S} & =\left\{\psi_{\mu}^{1,2}, \chi^{1, \ldots, 6}\right\} \\
\mathbf{b}_{1} & =\left\{\psi_{\mu}^{1,2}, \chi^{1,2}, y^{3, \ldots, 6} \mid \bar{y}^{3, \ldots, 6}, \bar{\psi}^{1, \ldots, 5}, \bar{\eta}^{1}\right\} \\
\mathbf{b}_{2} & =\left\{\psi_{\mu}^{1,2}, \chi^{3,4}, y^{1,2}, \omega^{5,6} \mid \bar{y}^{1,2}, \bar{\omega}^{5,6}, \bar{\psi}^{1, \ldots, 5}, \bar{\eta}^{2}\right\} \\
\mathbf{b}_{3} & =\left\{\psi_{\mu}^{1,2}, \chi^{5,6}, \omega^{1, \ldots, 4} \mid \bar{\omega}^{1, \ldots, 4}, \bar{\psi}^{1, \ldots, 5}, \bar{\eta}^{3}\right\} .
\end{aligned}
$$

$$
\begin{aligned}
\delta_{\mathbb{1}} & =\delta_{\mathbf{S}} \\
& =\delta_{\mathbf{b}_{1}} \\
& =\delta_{\mathbf{b}_{2}} \\
& =\delta_{\mathbf{b}_{3}} \\
& =-1
\end{aligned}
$$

## $\alpha \cdot \beta=(\# L-\# R) n_{\mathbb{C}}(\alpha \cap \beta)$ $\# L>\# R=+, \# L<\# R=-, \# L \neq \# R$



## $\alpha+\beta=\alpha \cup \beta-\alpha \cap \beta$

For example, consider

$$
1+b_{1}+b_{2}+b_{3}
$$

the union is

$$
\mathbb{1}=\left\{\psi_{\mu}^{1,2}, \chi^{1, \ldots, 6}, y^{1, \ldots, 6}, \omega^{1, \ldots, 6} \mid \bar{y}^{1, \ldots, 6}, \bar{\omega}^{1, \ldots, 6}, \bar{\psi}^{1, \ldots, 5}, \bar{\eta}^{1,2,3}, \bar{\phi}^{1, \ldots, 8}\right\}
$$

Now subtract, $b_{1}, b_{2}$ and $b_{3}$

$$
\mathbb{1}=\left\{\not \psi_{\mu}^{1,2}, \not \chi^{1, \ldots, 6}, \not \psi^{1, \ldots, 6}, \psi^{1, \ldots, 6} \mid \ddot{y}^{1, \ldots, 6}, \not \psi^{1, \ldots, 6}, \bar{\psi}^{1, \ldots, 5}, \hbar^{1,2,3}, \bar{\phi}^{1, \ldots, 8}\right\}
$$

So,

$$
1+b_{1}+b_{2}+b_{3}=\left\{\phi^{1, \ldots, 8}\right\}=\zeta
$$

$$
\begin{aligned}
\mathbf{1} \cdot \mathbf{1} & =-12 \Rightarrow 0 \bmod 8 \\
\mathbf{S} \cdot \mathbf{S} & =+4 \Rightarrow 0 \bmod 8 \\
\mathbf{b}_{\mathbf{1}} \cdot \mathbf{b}_{\mathbf{1}} & =-4 \Rightarrow 0 \bmod 8 \\
\mathbf{b}_{\mathbf{2}} \cdot \mathbf{b}_{\mathbf{2}} & =-4 \Rightarrow 0 \bmod 8 \\
\mathbf{b}_{\mathbf{3}} \cdot \mathbf{b}_{\mathbf{3}} & =-4 \Rightarrow 0 \bmod 8 \\
\mathbf{1} \cdot \mathbf{S} & =+4 \Rightarrow 0 \bmod 4 \\
\mathbf{1} \cdot \mathbf{b}_{\mathbf{1}} & =-4 \Rightarrow 0 \bmod 4 \\
\mathbf{1} \cdot \mathbf{b}_{\mathbf{2}} & =-4 \Rightarrow 0 \bmod 4 \\
\mathbf{1} \cdot \mathbf{b}_{\mathbf{3}} & =-4 \Rightarrow 0 \bmod 4
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{S} \cdot \mathbf{b}_{1} & =+2 \Rightarrow 0 \bmod 4 \\
\mathbf{S} \cdot \mathbf{b}_{2} & =+2 \Rightarrow 0 \bmod 4 \\
\mathbf{S} \cdot \mathbf{b}_{3} & =+2 \Rightarrow 0 \bmod 4 \\
\mathbf{b}_{\mathbf{1}} \cdot \mathbf{b}_{2} & =-4 \Rightarrow 0 \bmod 4 \\
\mathbf{b}_{\mathbf{1}} \cdot \mathbf{b}_{3} & =-4 \Rightarrow 0 \bmod 4 \\
\mathbf{b}_{\mathbf{2}} \cdot \mathbf{b}_{3} & =-4 \Rightarrow 0 \bmod 4
\end{aligned}
$$

$$
\begin{gathered}
\mathbb{1} \cdot \mathbb{1}=-12 \\
\mathbb{1} \cdot \mathbf{b}_{\mathbf{1}}=-4 \\
\mathbf{S} \cdot \mathbf{S}=4 \\
\mathbf{S} \cdot \mathbb{1}=4 \\
\mathbf{S} \cdot \mathbf{b}_{\mathbf{1}}=2 \\
\mathbf{b}_{\mathbf{i}} \cdot \mathbb{1}=-4, i=j=1,2,3 \\
\mathbf{b}_{\mathbf{i}} \cdot \mathbf{S}=2, \quad i=j=1,2,3 \\
\mathbf{b}_{\mathbf{i}} \cdot \mathbf{b}_{\mathbf{j}}=-4, \quad i=j=1,2,3 \\
\hline
\end{gathered}
$$

## The NAHE: The Basis $\{\mathbb{1}\}$ The Non-Supersymmetric Case

$$
\equiv=\{N S, 1\}
$$

The GSO coefficients in this case is

$$
c\binom{N S}{N S}=1, c\binom{N S}{\mathbb{1}}=-1, c\binom{\mathbb{1}}{N S}=-1, c\binom{\mathbb{1}}{\mathbb{1}}=-1
$$

By the Virasoro level-matching condition the sector $\mathbb{1}$ does contain any massless states. The only sector containing the massless states is the Neveu-Schwarz sector.

The NAHE: The Basis $\{\mathbf{1}, \mathbf{S}\}$ SUSY

$$
\begin{array}{rl}
\equiv= & \{N S, 1+S, 1, S\} \\
\mathbb{1} & \mathbf{S} \\
& \mathbb{1}\left(\begin{array}{cc} 
\pm 1 & 1 \\
1 & 1
\end{array}\right)
\end{array}
$$

$$
\equiv=\left\{N S, 1+S, 1+b_{1}, S+b_{1}, 1+S+b_{1}, 1, S, b_{1}\right\}
$$

$$
\begin{aligned}
\equiv= & \left\{N S, 1+S, 1+b_{1}, 1+b_{2}, S+b_{1}, S+b_{2}, b_{1}+b_{2}, 1+S+b_{1}\right. \\
& 1+S+b_{2}, 1+b_{1}+b_{2}, S+b_{1}+b_{2} \\
& \left.1+S+b_{1}+b_{2}, 1, S, b_{1}, b_{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
\equiv= & \left\{N S, 1+S, 1+b_{1}, 1+b_{2}, 1+b_{3}, S+b_{1}, S+b_{2}, S+b_{3},\right. \\
& b_{1}+b_{2}, b_{1}+b_{3}, b_{2}+b_{3}, 1+S+b_{1}, 1+S+b_{2}, 1+S+b_{3}, \\
& 1+b_{1}+b_{2}, 1+b_{1}+b_{3}, 1+b_{2}+b_{3}, S+b_{1}+b_{2}, S+b_{1}+b_{3}, \\
& S+b_{2}+b_{3}, b_{1}+b_{2}+b_{3}, 1+S+b_{1}+b_{2}, 1+S+b_{1}+b_{3}, \\
& 1+S+b_{2}+b_{3}, \zeta=1+b_{1}+b_{2}+b_{3}, \\
& \left.S+b_{1}+b_{2}+b_{3}, 1+S+b_{1}+b_{2}+b_{3}, 1, S, b_{1}, b_{2}, b_{3}\right\}
\end{aligned}
$$

$$
\zeta=1+b_{1}+b_{2}+b_{3}
$$

enhances the $S O(16) \rightarrow E_{8}$ as it contains

$$
\left[\binom{8}{0}+\binom{8}{2}+\binom{8}{4}+\binom{8}{6}+\binom{8}{8}\right]=128 \text { states. }
$$

The adjoint of $S O(16)$ has 120 states.

$$
120+128 \Rightarrow \operatorname{dim} E_{8}
$$


with
$N=4$

$$
N=2
$$

$$
N=1
$$

$$
\begin{aligned}
& S O(10) \longrightarrow S U(5) \times U(1) \\
& \downarrow \alpha \quad \uparrow \\
& S O(6) \times S O(4) \\
& \text { H. Sonmez (World Expert) } \\
& S U(3)_{C} \times U(1)_{C} \times S U(2)_{L} \times U(1)_{L}
\end{aligned}
$$

SO(10)

$$
\downarrow^{\alpha+\beta+\gamma}
$$

$S U(3)_{C} \times U(1)_{C} \times S U(2)_{L} \times S U(2)_{R}$

## Je Ne Sais Pas



THANK YOU!!!

