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Holographic Motivation Real Formulation Construction Interpretation Conclusion

AdSd+1/CFTd

asymptotically AdS gravity in bulk ←→ CFT on boundary

strong/weak coupling duality

explore previously inaccessible systems e.g. AdS/CMT
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

AdS/CMT

black objects in bulk

thermal ensemble in field theory
with same thermodynamic

properties (T , S , µ, . . . )

CMT obeys all thermodynamic laws.

There is a well established correspondence between laws of
thermodynamics and laws of black hole mechanics.

We need to build black objects that satisfy all of these.

D. Errington Slide 2 / 42



Holographic Motivation Real Formulation Construction Interpretation Conclusion

Nernst Law/3rd law of thermodynamics

All black objects seem to satisfy the 0th, 1st and 2nd laws.

There are several different forms of third law.

We follow strictest definition (unique ground state):

S
T−→0−−−−→ 0 holding other parameters fixed

Not always true e.g. RN black holes/branes have large
S(T = 0) 6= 0 indicating there isn’t a unique ground state.

Explained by microstate counting of D-branes or by stringy
higher curvature corrections for certain BPS BHs

Are there gravitational systems with S(T = 0) = 0?

There do exist small black holes with S(T = 0) = 0 but . . .
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

Why branes?

S
T→0−−−→ 0 means vanishing horizon area in extremal limit.

These satisfy Nernst law but A
T−→0−−−−→ 0 means rH −→ 0

SUGRA approx valid when RH < RP .

Sd−2 horizon topology ⇒ RH ∼ 1
r2
H

.

⇒ RH
T−→0−−−−→∞

Small black holes unsuitable for SUGRA analysis.

Natural to turn to black branes with Ricci-flat horizons.
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

Why gSUGRA?

Without fluxes 4d black objects have S2 horizon topology.

Turn on FI gauging to produce branes i.e. use gSUGRA.

c.f. fluxes along internal manifold

Electric field
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

Nernst branes in gSUGRA

Goal: Systematically construct a family of non-extremal black

branes in 4d, N = 2 gSUGRA s.t. s
T−→0−−−−→ 0 i.e. Nernst branes.

Why non-extremal?

Extremal Nernst branes turn out to not be completely regular
suggesting breakdown of effective theory.

Find non-extremal solns and study them in near extremal limit
to address this.

Want completely analytic results for this. Literature has
mixture of analytic/numerical.
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

What’s been done?

Barisch, Cardoso, Haack, Nampuri, Obers 1108.0296

Use 1st order flow eqns to construct extremal 4d Nernst brane
i.e. a black brane with s(T = 0) = 0.

Don’t construct non-extremal branes.

Goldstein, Nampuri, Véliz-Osorio 1406.2937

Obtain extremal Nernst brane in 5d.

Provide algorithm to deform extrmal soln into corresponding “hot”
(non-extremal) soln.

Dempster, DE, Mohaupt 1501.07863

Using real formulation of special geometry and dimensional
reduction, we make optimal use of EM duality and solve full 2nd order
EoMs to obtain 4d non-extremal solns.
Don’t restrict to particular model: class of very special prepotentials.
Technique not restricted to models with symmetric target spaces.
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Gauged SUGRA

Consistent duality requires bulk gravity to have well-defined UV
completion i.e. embedding in string theory.

gSUGRA is LEEFT arising through flux compactifications on
K3× T 2 or CY3.

4d bosonic Lagrangian of n VMs coupled to N = 2 U(1) ⊂ SU(2)R
gSUGRA is

e−1
4 L4 = −1

2
YR4 − gIJ∂µ̂X

I∂µ̂X̄ J +
1

4
IIJF I

µ̂ν̂F
J|µ̂ν̂ +

1

4
RIJF

I
µ̂ν̂ F̃

J|µ̂ν̂ − V (X , X̄ ).

V (X , X̄ ) = ∂IW ∂I W̄ − 2κ2|W |2, W = 2
(
g IFI − gIX

I
)
.

µ̂ = 0, . . . , 3, I , J = 0, . . . , n, F (X )hom. deg. 2.

Work on ‘big moduli space’ with X I , I = 0, . . . , n rather than
physical zA,A = 1, . . . , n.

Extra cx d.o.f. compensated for by C∗ gauge symmetry.

# scalars = # gauge fields ⇒ symplectic covariance.
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

Target Manifolds - visualise additional real d.o.f.

φ

conic affine special
Kähler, CASK
(X I ,NIJ)

C∗ = R>0 · U(1)

projective special Kähler,
PSK = CASK/C∗

(zA, gAB̄) with zA = XA

X 0

ξ = X I∂I + X̄ I ∂̄I

Jξ = iX I∂I − i X̄ I ∂̄I
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

Gauge Fixing

Gauge fix to go from superconformal theory to physical theory.

How do we do this?

D-gauge fixes dilatations:

Y = −i
(
X I F̄I − X̄ IFI

)
= κ−2

⇒ −1

2
YR4 = − 1

2κ2
R4.

U(1) transformations fixed by Im
(
X 0
)

= 0.

We postpone this to retain symplectic covariance and work in
a U(1) principal bundle instead over PSK base.
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

Real coordinates 1

Story so far has been using complex coords.

We use real formulation of special Kähler geometry.
[Freed: hep-th/9712042]
[Alekseevsky, Cortés, Devchand: hep-th/9910091]

Already been used to great success for building solns to

ungauged SUGRA coupled to VMs
[Mohaupt, Vaughan: hep-th/1112 : 2876]
[DE,Mohaupt,Vaughan: hep-th/1408.0923]
gauged SUGRA coupled to VMs
[Klemm,Vaughan: hep-th/1207.2679 & hep-th/1211.1618]
[Gnecchi, Hristov, Klemm, Toldo, Vaughan: hep-th/1311.1795]

Advantage: Symplectic covariance + tensorial behaviour
⇒ everything transforms linearly.
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

Real coordinates 2

X I = x I + iuI , FI = yI + ivI

qa = Re
(
X I ,FI

)T
=
(
x I , yI

)T
, a = 0, . . . , 2n + 1.

form real coordinate system on CASK (retain C∗ action over PSK).

Prepotential, F (X )
Legendre transf.−−−−−−−−−→ Hesse potential, H(qa)

Convenient to introduce dual coordinates:
qa = Ha = ∂H

∂qa = 2Im
(
FI ,−X I

)T
=
(
2vI ,−2uI

)T
Hab = ∂2H

∂qa∂qb is real version of NIJ (CASK metric):

qa = Habqb and qa = Habq
b

Tensorial behaviour is natural ⇒ simplifies calculations!
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

Dimensional Reduction 1

Seek stationary (actually static) brane solns allows
dimensional reduction over timelike S1.

KK ansatz: ds2
4 = −eφ (dt + Vµdx

µ)2 + e−φds2
3

with φ,V the KK scalar and vector resp.

Identify radial direction of cone with KK scalar.

Promote radial direction of cone from gauge d.o.f. to physical
d.o.f. by rescaling complex symplectic vector:(
Y I ,FI (Y )

)T
= e

φ
2

(
X I ,FI (X )

)T
Must redefine real symplectic vector:

qa =
(
x I , yI

)T
= Re

(
Y I ,FI (Y )

)T
(similar for qa)

D-gauge: −i
(
X I F̄I (X )− FI (X )X̄ I

)
= 1 (with κ = 1)

−→ −2H = −i
(
Y I F̄I (Y )− FI (Y )Ȳ I

)
= eφ
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

Dimensional Reduction 2

At 3d level, we find additional scalars:

ÂI
µ̂(t, x)dx µ̂ = ξIdt +

[
AI
µ(x) + ξIVµ(x)

]
dxµ

⇒ ÂI (t, x) = ξIdt + ÃI
µ(x)dxµ

ÃI ?←→ ξ̃I V
?←→ φ̃

q̂a =
(

1
2ξ

I , 1
2 ξ̃I

)T
with

(
∂µξ

I , ∂µξ̃I

)T
=
(
F I
µ0, G̃I |µ0

)T
There are 4n + 5 3d scalars

U(1) bundle over 4n + 4 dimensional para-QK mfold.
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

Model Constraints

Focus on very special models that can be lifted to 5d.

F (Y ) = f (Y 1,...,Y n)
Y 0 f hom. deg. 3 and real when

evaluated on real fields.

Also restrict to purely imaginary field config Re (zA) = 0

zA = Y A

Y 0 = xA+iuA

x0

PI ⇒ xA = 0 and must set y0 = 0 for consistency.

qa =
(
x0, xA; y0, yA

)T PI−→ qa|PI =
(
x0, 0, . . . , 0; 0, y1, . . . , yn

)T
⇒ qa = 1

H

(
−v0,−vA; u0, uA

)T PI−→ qa|PI = 1
H

(
−v0, 0, . . . , 0; 0, u1, . . . , un

)T
qa, qa are symplectic vectors. Now only want to allow
transformations by Stab(PI ) ⊂ Symp(2n + 2,R)

Natural to extend PI to ∂µq̂
a and g a =

(
g I , gI

)T
.

Greatly simplifies EoMs
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

3d Lagrangian

Reduce to 3d Euclidean theory and repackage d.o.f. using real
coords. Then restrict to static and purely imaginary branes to find:

e−1
3 L3 = −1

2
R3−H̃ab

(
∂µq

a∂µq
b − ∂µq̂a∂µq̂b − gagb

)
+4 (gaqa)2

H̃ab is modified metric on CASK:

H̃ab = ∂2H̃
∂qa∂qb

with H̃ = −1
2 log (−2H)

H̃ab|PI =



H̃00(q0) 0 0

∗ . . . ∗

0
...

. . .
... 0

∗ . . . ∗
H̃n+2,n+2(qA) . . . H̃n+2,2n+1(qA)

0 0
...

. . .
...

H̃2n+1,n+2(qA) . . . H̃2n+1,2n+1(qA)


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Holographic Motivation Real Formulation Construction Interpretation Conclusion

EoMs

Scalar equations of motion:

∇2q̂a = 0

∇2qa +
1

2
∂aH̃

bc (∂µqb∂
µqc − ∂µq̂b∂µq̂c)−

1

2
∂aH̃bcg

bg c + 4H̃abg
b (g cqc) = 0

−1

2
R3|µν − H̃ab (∂µqa∂νqb − ∂µq̂a∂ν q̂b) + gµν

(
−H̃abg

agb + 4 (g aqa)
2
)
= 0

Goal: solve these EoMs to find 3d instantons that we can lift back
to regular 4d black branes.
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

Electric Black Branes

We want Nernst brane solutions supported by:

single electric charge, Q0

electric fluxes g1, . . . , gn

In paper, we also discuss situation with single magnetic
charge, P0, and electric/magnetic fluxes.

Leave thorough analysis of dyonic case to future work.
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

Metric Components

For very special prepotentials, F (Y ) = f (Y 1,...,Y n)
Y 0 , we find

H = −1

4
(−q0f (q1, . . . , qn))−

1
2

. PI config necessary to perform Legendre transformation and
find explicit form of H.

For general f , H̃ab is complicated.

But since q0 is decoupled by PI condition, we can compute

H̃00 =
1

4q2
0

, q0 = − 1

4q0

This turns out to be sufficient to find solutions valid for any f .
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

Hamiltonian Constraint

3d metric ansatz: ds2
3 = e4ψ(τ)dτ2 + e2ψ(τ)

(
dx2 + dy2

)
where ψ(τ) is yet to be determined and qa, q̂a only depend on τ .
N.B. τ is affine parameter for ‘geodesics’ (with potential) on pQK.

From above metric we can compute R3|µν and Einstein equations
from L3 become

−H̃abg
agb + 4(qag

a)2 − 1

2
e−4ψψ̈ = 0 for µ = ν 6= τ

H̃ab
(
q̇aq̇b − ˙̂qa ˙̂qb

)
= ψ̇2 − 1

2
ψ̈ for µ = ν = τ

ττ equation equivalent to Hamiltonian constraint.
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

q̂a EoM

¨̂qa = 0 ⇒ ˙̂qa = Ka

The consts Ka are proportional to electric/magnetic charges i.e.

Ka =
(
−QI ,P

I
)T

We only have a single electric charge:

˙̂q0 = −Q0, ˙̂qa = 0 ∀a 6= 0
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

q0 EoM

Recall the qa EoM was

e−4ψq̈a+
1

2
∂aH̃

bce−4ψ
(
q̇bq̇c − ˙̂qb ˙̂qc

)
−1

2
∂aH̃bcg

bg c+4H̃abg
b(qcg

c) = 0

Because there is no magnetic flux g0 = 0, the q0 EoM decouples.
Substituting ˙̂q0 = −Q0 gives

q̈0 −
q̇2

0 − Q2
0

q0
= 0

with the same solution as in ungauged case:

q0(τ) = ±−Q0

B0
sinh

(
B0τ + B0

h0

Q0

)
B0 = non-ext parameter

with B0, h0 constants that satisfy B0 ≥ 0, sign(h0) = sign(Q0).
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

qA EoM

These are the difficult eqns to solve:

e−4ψ q̈A + 1
2
e−4ψ

n∑
B,C=1

∂AH̃
BC q̇B q̇C −

1

2

n∑
B,C=1

(∂AH̃BC )gBgC + 4
n∑

B=1

H̃ABgB

(
n∑

C=1

qCgC

)
= 0

Multiply by qA and use homogeneity to obtain:

e−4ψ
n∑

A=1

qAq̈A + e−4ψ
n∑

A,B=1

H̃AB q̇Aq̇B +
n∑

A,B=1

H̃ABgAgB − 4

(
n∑

A=1

qAgA

)2

= 0

Substituting the µ = ν 6= τ Einstein equation and integrating gives:
n∑

A=1

qAq̇A =
1

2
ψ̇ −

1

4
a0 with a0 an integration constant.

Then, since dH̃
dτ = q̇0

4q0
−

n∑
A=1

qAq̇A, we can substitute this and integrate:

log (f (q1, . . . , qn)) = −2ψ + a0τ + b0 with b0 another integration const.

Picture: qA are solns of top eqn constrained by above eqn and also ττ Einstein

eqn:
n∑

A,B=1

H̃AB q̇Aq̇B = ψ̇2 −
1

2
ψ̈ −

1

4
B2

0
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

qA EoM

We proceed by imposing qA(τ) = ξAq(τ)

This will force physical zA proportional to one another.

There remain n arbitrary electric flux parameters, gA.

The two constraints from previous slide become:

3
(

q̇
q

)2

= 4ψ̇2 − 2ψ̈ − B2
0 , 3

(
q̇
q

)
= −2ψ̇ + a0

Combine these to get second order differential eqn:
ψ̈ − 4

3
ψ̇2 − 2

3
a0ψ̇ + 1

2
B2

0 + 1
6
a2

0 = 0

Let y := exp
(
−4

3ψ − 1
3a0τ

)
then this is harmonic oscillator:

ÿ − ω2y = 0, where ω2 = 2
3
B2

0 + 1
3
a2

0

and solution is
exp

(
− 4

3
ψ − 1

3
a0τ
)
= α

ω
sinh (ωτ + ωβ) with α, β > 0 integration consts.

This implies e−4ψ =
(
α
ω

)3
sinh3 (ωτ + ωβ)ea0τ [3d metric d.o.f.]
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

qA EoM

Differentiate the metric d.o.f. and substitute into second constraint.

After some straightforward algebra we arrive at

qA = λAe
1
2 a0τ (sinh (ωτ + ωβ))

1
2

Substituting this into original qA EoM, we find that q1g1 = · · · = qngn and
EoM only satisfied if

λA = ± 3

8ngA

(
α3

ω

) 1
2

Final expression:

qA = ± 3

8ngA

(
α3

ω

) 1
2

e
1
2 a0τ (sinh (ωτ + ωβ))

1
2

D. Errington Slide 25 / 42



Holographic Motivation Real Formulation Construction Interpretation Conclusion

Regular Black Brane Solution

Black brane solution has metric

ds2
4 = −eφdt2 + e−φ+4ψdτ2 + e−φ+2ψ

(
dx2 + dy2

)
where τ → 0 represents the asymptotic regime and τ =∞ is the event horizon.

The metric d.o.f. are

e−4ψ =

(
1

B0

)3

sinh3 (B0τ)eB0τ ,

eφ = −2H =
1

2
(−q0)

1
2 (f (q1, . . . , qn))−

1
2 ,

with scalar fields given by

q0 = ±
−Q0

B0
sinh

(
B0τ + B0

h0

Q0

)
, qA = ±

3

8ngA

(
1

B0

) 1
2

e
1
2
B0τ (sinh (B0τ))

1
2 ,

zA = −i
(

−q0q2
A

f (q1, . . . , qn)

) 1
2

finite on horizon for B0 6= 0 (non-ext solns).

We have set a0 = ω = B0 in above to get regular solns (finite s)
We have set β = 0 s.t. asymptotic region at τ = 0. Then scale τ s.t. α = 1.
exp(b0) fixed to be fn of fluxes in order to satisfy EoMs.

Leaves a family of solns parameterised by B0 and h0.
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

Change of Coordinates

It’s convenient to change to the radial coordinate ρ given by

e−2B0τ = 1− 2B0

ρ
= W (ρ)

The scalars become

q0 = ± H0

W
1
2

, qA = ± 3

8ngA
(ρW )−

1
2 with H0(ρ) a harmonic fn.

The general expression for the 4d line element is

ds2
4 = −H− 1

2 ρ
3
4 dt2 +H 1

2 ρ−
7
4
dρ2

W
+H 1

2 ρ
3
4

(
dx2 + dy2

)
where H is a fn of H0, gA.

This change of coordinates makes taking limits more transparent. In
particular, horizon is now at ρ = 2B0 and asymptotic region at
ρ→∞.

B0 → 0 reproduces extremal soln in literature (∴ B0 is non-ext
parameter).
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

Thermodynamics

Zooming in on near-horizon geometry, one can compute the horizon
temperature and entropy density of the black brane. These are
related by

B0 = 2πsTH

We can also look at the asymptotic values of the 4d gauge fields to
find the chemical potential

µ =
1

2

(
B0

Q0

)[
coth

(
B0h0

Q0

)
− 1

]
Have a 2 parameter family with (B0, h0) controlling:

brane geometry on gravity side
thermodynamic quantities s,TH and µ on CMT side
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

Equation of State

Can combine above expressions to find the equation of state

s3 = 4πZ 2TH

(
1 +

2πsTH

Q0µ

)
Z is fn of charges and fluxes.

TH

s

d
c
b
aμ=0.1

μ=0.25

μ=1

μ=10,000

s

TH0

We see that s → 0
as we send TH → 0
so we are justified in
calling our solutions
Nernst branes.

Smooth crossover in behaviour from:

s ∼ T
1
3

H regime when TH/µ� 1
s ∼ TH regime when TH/µ� 1.
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

Family of Black Branes

We now have a 2 parameter family of solutions.

Changing B0, h0 (resp. TH , µ) changes the scalar fields and thus the
4d metric.

We therefore need to consider 4 cases depending on whether these
parameters are zero or not.

We shall consider the near-horizon and asymptotic geometries (IR
and UV of field theory) of all 4 cases.

In each case, the geometry will turn out to belong to the so-called
hyperscaling-violating Lifshitz geometries.
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

hvLif Spacetimes

ds2
d+2 = r−

2(d−θ)
d

(
−r−2(z−1)dt2 + dr2 + dx2

i

)
i = 1, . . . , d labels spatial directions on boundary. For us, d = 2.
z is Lifshitz exponent
θ is hyperscaling violating exponent
(z , θ) = (1, 0) returns AdSd+2

Don’t worry about not having asymptotically AdS solns.
Recently there has been much work on hvLif holography:

Under t → λz t, r → λr , xi → λxi we find ds → λ
θ
d ds.

Many CMTs have such anistropic scaling (z 6= 1) because they’re
nonrelativistic and break Lorentz symmetry.

θ 6= 0 implies scale invariance of Tµν for dual CMT is broken.
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

B0 = 0, h0 = 0: Ground State

Set B0 = 0 (extremal) and h0 = 0. This means:

TH = 0

µext = 1
2h0

h0→0−−−→∞
Furthermore,

metric becomes globally hvLif with (z , θ) = (3, 1).

not geodesically complete

zA ∼ ρ−1/4 run to zero or infinity in asymptotic regions

similar to some domain wall solns in gSUGRA which, as most
symmetric solns, are interpreted as ground states.

Therefore, we interpret this solution as gravitational ground state of
given charge sector (Q0 6= 0).

Expect to be dual to (2 + 1)-d QFT with θ = 1 (hidden Fermi surfaces).
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

B0 = 0, h0 6= 0

Set B0 = 0 (still extremal) but now with h0 6= 0. This means:

TH = 0

µext = 1
2h0

finite

The solution interpolates between:

hvLif with (z , θ) = (3, 1) near horizon.

hvLif with (z , θ) = (1,−1) at infinity (conformal AdS).

This is the extremal Nernst brane solution of Cardoso et al.

Note the effect of taking the limit h0 → 0 is to change asymptotic
geometry from (1,−1) 7→ (3, 1).

We will see shortly that the B0 → 0 limit controls a change in near

horizon geometry.
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

Infinite Tidal Forces

The extremal (B0 = 0) solns exhibit mild singular behaviour.

All curvature invariants finite as ρ→ 0 ⇒ no curvature singularity.
The singular behaviour in question is less severe:

T

S

ρ=0 ρ=2B0

ρ=∞

In hvLif spacetime, geodesic
acceleration is

∇T∇TS = R(S ,T )T

with

R(S ,T ) ∼ z − 1

ρ2z

For z = 1 (AdS), R(S ,T ) = 0 so geodesics remain parallel.

Our extremal solns have z = 3 near horizon so R(S ,T )→∞ as ρ→ 0.
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Holographic Motivation Real Formulation Construction Interpretation Conclusion

Spaghettification

Such infinite tidal forces result in so-
called “spaghettification” of
infalling observers due to
horizontal compression and
vertical elongation.

Infinite tidal forces occur for z 6= 1 as ρ→ 0 (ext. horizon)

Furthermore, can easily show physical 4d scalars, zA ∼ ρ−1/4, blow
up on horizon in extremal (B0 = 0) case.

Field theory can’t be trusted ⇒ study non-ext solns near horizon.

For non-extremal solns, horizon is located at ρ = 2B0. This protects
them from singular behaviour which occurs behind the horizon.

Tidal forces could still be large in low temp non-ext case but should
be able to identify trustworthy range in parameter space where
mapping to CMT might be possible.
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B0 6= 0: Non-extremal Black Branes

B0 6= 0 means TH 6= 0 and µ = 1
2

(
B0

Q0

) [
coth

(
B0h0

Q0

)
− 1
]

as before.

The 2 cases to consider are:

h0 = 0: Finite temperature and infinite chemical potential.
Near horizon Rindler geometry with (z , θ) = (0, 2).
hvLif with (z , θ) = (3, 1) at infinity.

h0 6= 0: Finite temperature and finite chemical potential.
Near horizon Rindler geometry again.
hvLif with (z , θ) = (1,−1) at infinity.

B0 → 0 limit changes near horizon geometry from (0, 2) 7→ (3, 1).

All values of d , z , θ from both extremal and non-extremal cases are

compatible with Null Energy Condition giving a causal field theory

[Hoyos, Koroteev, 1007.1428].
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Phase Diagram
s ∼ T 3 in far UV

s ∼ T
1
3

s ∼ T

µ

T
H

1

By analysing the equation
of state for our gravity soln,

s3 = 4πZ 2TH

(
1 + 2πsTH

Q0µ

)
,

we obtain the phase diagram for the
field theory.

Scaling argument ⇒ s ∼ T
d−θ
z for field theory:

Non-ext Nernst brane with B0 6= 0, h0 = 0 is dual to (2 + 1)-d QFT
with (z , θ) = (3, 1) as scaling behaviour matches.

B0 6= 0, h0 6= 0:

smooth crossover between two (2 + 1)-d QFTs: one with
(z , θ) = (1,−1) in UV and one with (z , θ) = (0, 2) in IR.
UV scaling behaviours don’t match. Along with
zA ∼ ρ1/4 →∞, this suggests SUGRA incomplete in UV.

If UV geometry correctly captures thermodynamic behaviour then
scaling behaviour should be s ∼ T 3
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Conclusion

New technique for finding non-extremal black branes in gSUGRA
using dimensional reduction and real formulation of special
geometry.

Family of non-extremal black branes whose entropy density vanishes
in extremal limit. These are Nernst branes.

Should be holographically useful as they’re dual to field theories
with finite temperature and chemical potential that satisfy 3rd Law.

Analytically find solutions which interpolate between two hvLif
geometries. Family is parametrised by B0 and h0, or equivalently, by
temperature TH and chemical potential µ of the solution.

B0 → 0 changes near-horizon geometry.
h0 → 0 changes asymptotic geometry.

So far solutions interpolating between hvLif geometries have relied
on a mixture of analytical and numerical methods.
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Conclusion

Approached this very much from the gravity side and leave
searching for concrete holographic duals to future work.

Some of our solutions give hvLif geometries with θ = 1. These lie in
class of models with θ = d − 1 which are thought to be dual to
hidden Fermi surfaces and are some of the best studied examples in
hvLif holography.

Expect our systematic methods and analytical results that satisfy
Nernst Law, can be used to make a valuable contribution to
classification of solns in the rapidly increasing hvLif/CFT landscape.
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Outlook

1 5d lift:

SUGRA theory not UV complete suggesting additional d.o.f.
become relevant.
Interpret UV behaviour as decompactification limit.
Should embed theory into 5d gSUGRA (v. special F (X )).
Evidence suggests that dim red of theories with AdSd vacua
result in hvLifd−1 geometries
Expect to obtain asymptotically AdS5 solns that also satisfy
Nernst Law.
Hopefully get a clearer holographic picture using AdS5/CFT4

correspondence.
N.B. Asymptotic AdS5 has z = 1, θ = 0, d = 3 giving s ∼ T 3

which matches proposed UV theory.

2 Dyonic charges and quantum phase transitions.
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Outlook

Xkcd says:
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Outlook

David Tong says:
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