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Remarks on AdS/CFT 

AdS/CFT is a remarkable duality between 
ordinary (even perturbative) field theories and a 

theory of quantum gravity (and strings, etc) 
with specified boundary conditions. 



Why emergent geometry?

• Field theory lives in lower dimensions than gravity

• Extra dimensions are encoded “mysteriously” in field theory. 

• For example: local Lorentz covariance and equivalence principle need to be 
derived from scratch.

• Not all field theories lead to a reasonable geometric dual: we’ll see examples.

• If we understand how and when a dual becomes geometric we might 
understand what geometry is.



Goal

• Do computations in field theory

• Read when we have a reasonable notion of geometry.



When do we have geometry?

We need to think of it in terms of having a lot of light 
modes: a decoupling between string states and 

“supergravity”

Need to find one good set of  examples.



Some technicalities



Coordinate choice

Global coordinates in bulk correspond to radial 
quantization in Euclidean field theory, 
or quantizing on a sphere times time.



ds2 = � cosh

2 ⇢dt2 + d⇢2 + sinh

2 ⇢d⌦2

In equations

Conformally rescaling to boundary

ds2 ' exp(�2⇢)[� cosh

2 ⇢dt2 + d⇢2 + sinh

2 ⇢d⌦2
]

!⇢!1 (�dt2 + d⌦2
)



Choosing Euclidean versus Lorentzian time in radial 
quantization of CFT implements the Operator-State 

correspondence

ds2 = r2(dr2/r2 + d⌦2
3)

' (d⌧2 + d⌦2
3)

' (�dt2 + d⌦2
3)

O(0) ' O|0iR.Q. ' |Oi



HS3⇥R ' �

Hamiltonian is generator of dilatations.

Energy of a state is the dimension (incl. anomalous 
dimension) of the corresponding operator.



AdS/CFT is a quantum equivalence

Everything that happens in field theory (the boundary) 
has a counterpart in gravity (the bulk).

Everything that happens in the bulk has a 
counterpart in  the boundary

This implies they have the same Hilbert space of
states as representation theory of Conformal group.



For this talk

AdS5 ⇥ S5 N=4 SYMdual to

(deformations or
Orbifolds of)

(Deformations or
Orbifolds of)



Plan of the (rest of the) talk

• The problem of here and now

• Giant gravitons 

• Giant graviton states and collective coordinates

• Strings stretched between giants

• Deformations and geometric limits

• Conclusion/Outlook



Here and now.

To talk about geometry we need to be able to place
an excitation/observer at a given location at a given 

time.

Then we can talk about the dynamics of such an 
excitation.



To measure a distance

Two observers and a measure tape between them



Observer: heavy object, so it stays put (classical).
D-branes are natural

Measuring tape: strings suspended between
D-branes.

Estring ' T `



Why giant gravitons, what are giant gravitons?



GIANT GRAVITONS

Gravitons: half BPS states of AdS

Preserve SO(4)x SO(4) symmetry

Point particles moving on a diameter of sphere and 
sitting at origin of AdS



There are also D-brane (D3-branes) states that respect 
the same symmetry and leave half the SUSY invariant.

SO(4) x SO(4) invariance implies

Branes wrap a 3-sphere of 5-sphere at 
origin of AdS (moving in time)

OR

Branes wrap a 3-sphere of AdS, at a
point on diameter of 5- sphere



(x1)2 + (x2)2 + r

2
S3 = 1

x

1
+ ix

2
= z = exp(it)

Solution

solving equations of motion gives

Picture as a point on disk moving with
angular velocity one

McGreevy, Susskind, Toumbas, hep-th/000307

The one at z=0 has maximum angular momentum



They are D-branes

Can attach strings

Gauss’ law
Strings in = 
Strings out

Gauge symmetry 
on worldvolume

Mass of strings should be roughly a distance:
depends on geometric position of branes



In gravity, D-branes are localized, but if they 
have a fixed R-charge in the quantum theory, 
they are delocalized in the angle variable of z

This is, they correspond to a oscillating 
wave function on the angle of z (zero mode)

To find masses of strings the branes must 
also be localized on angles, so they require 

uncertainty in angular momentum.



Giant graviton states and their collective 
coordinates.

To preserve SO(4)xSO(4) invariance, gravitons 
need to look like

Tr(Zn)

Where Z is a complex scalar of the N=4 
SYM multiplet.



Giant graviton states:

det`Z =
1

N !

✓
N

`

◆
✏i1,...,i`,i`+1...,iN ✏j1,...,j`,i`+1...,iNZi1

j1
. . . Zi`

j`

Subdeterminant operators
  Balasubramanian, Berkooz, Naqvi, Strassler,  hep-th/0107119

Complete basis of all half BPS operators in terms of 
Young Tableaux,

Corley, Jevicki, Ramgoolam, hep-th/0111222



Interpretation

A giant graviton with fixed R-charge is a quantum 
state that is delocalized in dual variable to R-charge

To build localized states in dual variable we need to 
introduce a collective coordinate that localizes on the 
zero mode: need to introduce uncertainty in R-charge



Introduce collective coordinate for giant gravitons

det(Z � �) =
NX

`=0

(��)N�` det`(Z)

Consider

This is a linear combination of states with 
different R-charge, depends on a complex 

parameter, candidate for localized giant 
gravitons in angle direction



Computations can be done!



hdet(Z̄ � �̃⇤) det(Z � �)i =
NX

`=0

(��̃⇤)N�` N !

(N � `)!
= N !

NX

`=0

(��̃⇤)`
1

(`)!

Can compute norm of state

can be well approximated by
hdet( ¯Z � ˜�⇤

) det(Z � �)i ' N ! exp(�˜�⇤
)

For
|�| <

p
N

The parameter belongs to a disk



Consider a harmonic oscillator and coherent states
|↵i = exp(↵a†)

h�|↵i = h0| exp(�⇤a) exp(↵a†)|0i
= exp(↵�⇤

)h0| exp(↵a†) exp(�⇤a)|0i
= exp(↵�⇤

)

Then



This means that our parameter can be 
interpreted as a parameter for a coherent state of 

a harmonic oscillator.

Can compute an effective action

Seff =

Z
dt [h�|i@t|�i � h�|H|�i]



Seff =

Z
dt


i

2
(�⇤�̇� �̇⇤�)� (N � ��⇤)

�

We get an inverted harmonic oscillator in a first
order formulation.

Approximation breaks down exactly when
 Energy goes to 0

Solution to equations of motion is that the 
parameter goes around in a  circle with angular 

velocity one.



This is very similar to what happens in gravity

If we rescale the disk to be of radius one, 
we get

Seff = N

Z
dt


i

2
(⇠⇤⇠̇ � ⇠̇⇤⇠)� (1� ⇠⇠⇤)

�

The factor of N in planar counting suggests that this 
object can be interpreted as a D-brane



Matches exactly with the fermion droplet picture of
half BPS states

D. B. hep-th/0403110
Lin, Lunin, Maldacena, hep-th/0409174



Attaching strings

The relevant operators for maximal giant are

✏✏(Z, . . . Z,W 1, . . .W k)

These can be obtained from expanding

det(Z +
X

⇠iW
i)

And taking derivatives with respect to parameters

  Balasubramanian, Huang, Levi and Naqvi, hep-th/0204196



Main idea: for general giant replace Z by Z-λ in the 
expansion

det(Z +

X
⇠iW

i
) = det(Z) exp(Tr log(1 + Z�a

X

i

⇠iW
iZ�b

))



One loop anomalous dimensions = masses of 
strings

Want to compute effective Hamiltonian of strings 
stretched between two giants.

det(Z � �1) det(Z � �2)Tr((Z � �1)
�1Y (Z � �2)

�1X)

Exact full combinatorics of 2 giants on same group is 
messy: easier to illustrate on orbifolds.



H1�loop

/ g2
YM

NTr[Y, Z][@
Z

, @
Y

]

@Z det(Z � �) = det(Z � �)
1

Z � �

@Ztr
�
(Z � �)�1W

�
= �(Z � �)�1W (Z � ��1)

Need following partial results

Collect planar contributions.



What we get in pictures

m2
od

' g2
YM

|�� �̃|2

E ' m2
od

' g2
YM

|�� �̃|2

' g2
YM

N |⇠ � ⇠̃|2

Result is local in collective coordinates (terms that could 
change collective parameters are exponentially 

suppressed)
Mass proportional to distance is interpreted as Higgs 

mechanism for emergent gauge theory.



Spin chains

Y ! Y n

Need to be careful about planar versus non-planar
diagrams.

� ' N1/2



Simplest open chains

6

occupation number N
total

(which remember, commutes with the 1-loop Hamiltonian) then

we find that the wave function is such that  (n1, n2, . . . , nk

) = 1 for all n
i

with
P

n
i

= N
total

,

and that there is exactly one such state. This matches with the chiral ring computation

of the N = 4 SYM, where there is a unique single trace element of the schematic form

Tr(ZN

totY k).

Now, we will proceed with the computation of the Cuntz chain Hamiltonian for the case

of an open string attached to a pair of giant gravitons. The formulation found in [1] shows

that for a single giant graviton, it is natural to use the basis of operators given by

det(Z � �)Tr(
1

Z � �
Y Zn1Y . . . Zn

kY ) (16)

which would represent a single string starting and ending on the same giant gravitons. We

can call this state by the label |�;n1, . . . nk

i. Notice that the trace now has a preferred site:

the one where � shows up. Thus we do not impose the cyclic property on the wave functions

for the n
i

.

When dealing with multiple giant gravitons, we want the start and the end of a string

to be in di↵erent giant gravitons, so that the boundary condition on the left can take a

di↵erent value than the boundary condition on the right. Just as in [1], it is simpler to work

in the supersymmetric Z2 orbifold of N = 4 SYM, rather than in N = 4 SYM directly. This

corresponds to a U(N) ⇥ U(N) quiver theory with N = 2 SUSY in four dimensions. The

chiral superpartners of the vector fields will be called Z, Z̃, while the matter hypermultiplets

between the two gauge groups will be made of X, Y chiral fields. The corresponding state

will be given by

det(Z � �) det(Z̃ � �̃)Tr(
1

Z � �
Y12Z̃

n1Y21Z
n2Y Z̃n3 . . . Zn

kY12
1

Z̃ � �̃
X21) (17)

Where we note that we need another string to go back to the original giant graviton, which

we have made out of a single X. The labels Y12 indicate that the Y is a bifundamental

in the (N1, N̄2) representation of the U(N1) ⇥ U(N2) orbifold group (with N1 = N2 = N

numerically), whereas the Y21 is in the (N̄1, N2) representation.

The idea of using a di↵erent letter for the string that heads back is that we can isolate

the contributions to the anomalous dimension from the Y, Z interactions as described above

and forget the ones that come from the Z,X interactions. That way there is no double

counting of contributions. To get the full result, we add another copy of the computation

Just replace the W by n copies of Y: Z can jump in and 
out at edges. So we need to keep arbitrary Z in the 

middle.
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We then proceed to study the ground state of this spin chain by using coherent states for

the Cuntz oscillator, which are the natural degrees of freedom for this spin chain and we also

compute the ground state energy. The Cuntz oscillator coherent states are also described by

a complex parameter and are restricted to a disk of radius 1. We show that the coordinates

of the disk of radius one arising from the spin chain and the disk of radius
p
N are really

describing the same disk after rescaling and complex conjugation. However, the e↵ective

metric that the string and the giant graviton see are di↵erent from each other.

II. THE CUNTZ SPIN CHAIN BOUNDARY CONDITIONS

Let us first briefly recall the determination of the one loop anomalous dimensions for

the SU(2) spin chain from N = 4 SYM and we will rewrite it in terms of a spin chain

for bosons that satisfy the Cuntz oscillator relations. The truncation to the SU(2) spin

chain follows straightforwardly from the work [7], which computed the SO(6) spin chain

Hamiltonian. The main observation needed for the calculation is that for holomorphic

operators made of scalars, the contributions from D-terms, the gluon exchange and the self

energy corrections cancel against each other [8], so that only F-terms can contribute to

the anomalous dimension. From the superpotential of N = 4 SYM, W = Tr(X[Y, Z]) the

F-terms are given by the following structure

F -terms = g
YM

Tr(F
X

[Y, Z] + F
Y

[Z,X] + F
Z

[X, Y ]) + c.c (1)

plus the kinetic term Tr(F ⇤ F ). We keep the factor of g
YM

to be able to count loops, but

other numerical coe�cients are dropped. Although the F fields are auxiliary variables, it is

convenient to keep them in the Feynman diagrams. Now we let the anomalous dimension

computation proceed on a word of the type

|n1, n2, n3 . . . , nk

i = Tr(Y Zn1Y Zn2Y Zn3 . . . Y Zn

k) (2)

Notice how we choose the labeling in terms of the number of Z in between the Y . The

standard convention would be to name these states as a spin chain with SU(2) indices at

each position, which are an up state Y ' | "i and a down state Z ' | #i [7]. Thus, the map

between the two conventions for labeling states is given by

|n1, n2, n3 . . . i ' | ", #⌦n1 , ", #⌦n2 , ", #⌦n3 , . . . i (3)

Choose the following labeling for the basis

Can do same for closed strings



After some work we can show that the 1-loop 
anomalous dimension (spin 1/2 chain) for 

bulk is given by a nearest neighbor interaction

4

zero occupation numbers on some of the n
i

)

H
eff

|n1, n2, n3 . . . , nk

i = g2
YM

N
kX

i=1

2| . . . , n
i�1, ni

, n
i+1 . . . i (7)

�| . . . , n
i�1 + 1, n

i

� 1, n
i+1 . . . i � | . . . , n

i�1, ni

� 1, n
i+1 + 1 . . . i

The sum over the last and first term require us to use the identification that n
k+1 = n1 and

n0 = n
k

. This makes the spin chain periodic.

It is convenient to introduce raising and lowering operators for the n
i

labels, such that

a†
i

|n
i

i = |n
i

+ 1i and a
i

|n
i

i = |n
i

� 1i, with the convention that no negative occupation

numbers are allowed, this is | � 1i = 0 so that a
i

|0
i

i = 0, and such that they commute

with each other. Such a set of creation and annihilation operators satisfy the Cuntz algebra

(this is related to a deformation of the standard oscillator alegbra) , this is aa† = 1, and

a†a = 1 � P0, where P0 is the projector onto the zero occupation state. The reason to

use this representation is that the e↵ective Hamiltonian can be written in terms of these

raising/lowering operators in the following form

H
eff

= g2
YM

N
X

i

2a†
i

a
i

� a†
i�1ai � a†

i+1ai (8)

The first term can be thought of as the energy for staying in place, whereas the other two

terms can be interpreted as particles hopping out of site i into site i + 1 or i � 1. This

Hamiltonian can also be written as follows

H
eff

= g2
YM

N
X

i

(a†
i+1 � a†

i

)(a
i+1 � a

i

) (9)

which shows that it is a sum of squares.

Notice that because aa† = 1, all operators should naturally be written as linear com-

binations of objects in normal ordered form Ŝ
kn

= (a†)kan. It is easy to show that

Ŝ
nn

= (a†)nan = 1 �
P

n�1
k=0 Pk

, where the P
k

are the projectors on the state with occu-

pation number k. The occupation number is given by the following expression

N̂ =
1X

n=1

Ŝ
nn

= N̂ † (10)

it is clear that Ŝ
nn

|n
i

i = 0 if n > n
i

, and that otherwise Ŝ
nn

|ni
i

= |ni
i

. It is easy to show

that N̂
tot

=
P

i

N̂
i

commutes with the Hamiltonian. This follows straightforwardly from the

commutation relations [N̂ , a†] = a†, which are straightforward to prove.

Which clearly shows it is a sum of squares.
Ground states?

In a bosonic basis. 



aa† = 1

Cuntz oscillators



After some work ... boundary terms can be 
computed

9

We find that the correct coe�cient to attach to this process is g2
YM

N �p
N

. Notice that this

takes n1 ! n1 � 1. Following our practice of labeling states with Cuntz oscillators, we see

that the hop-out interaction is given by the following extra contribution on the first element

of the spin chain

Hhop-out, left ' �g2
YM

N
�p
N
a1 (28)

Hermiticity ensures that the hop-in interaction is the adjoint of this operation, so we have

that

Hhop-in, left ' �g2
YM

N
�⇤
p
N
a†1 (29)

Finally, there is one extra contribution to the left from acting with the term Tr(ZY @
Y

@
Z

)

where the derivative with respect to Z acts on the giant graviton. Such terms are identical

to those that were already computed in [1], and these are given by

g2
YM

��⇤ (30)

Such terms were called ‘kissing interactions’ in [13].

Putting it all together, we find that the open spin chain Hamiltonian on the left side of

the spin chain is given by

H
eff

' g2
YM

N

✓
�p
N

� a†1

◆✓
�⇤
p
N

� a1

◆
+ (a†1 � a†2)(a1 � a2) + . . .

�
(31)

A similar term shows up in the right hand side, with � ! �̃ and a1 ! a
k

. Notice that

this is a simple generalization of equation (9) at the boundaries. This is a nearest neighbor

interaction with hopping in and out of the chain at the boundaries. It is important to notice

that since the parameter � is complex, there are phases associated to hopping in and out

at the boundary. This is a simple generalization of the spin chain Hamiltonian found in

[5, 6]. Notice that the Hamiltonian can be made to be the same as the one presented in

that work if we choose � = �̃ = �
p
N(1� p/N) in the notation of [5]. Notice that this

result ends up having the same information content as the one found in [13] (particularly

equation ). All we have to do is interpret the parameter �/ in our expression in terms of

raising and lowering operators associated to the momentum of the giant graviton. Since �

is a coherent state parameter for a (inverted) harmonic oscillator, as shown in [1], we can

think of � ' b and �⇤ ' b†, for a harmonic oscillator pair. In this case, acting with a

lowering operator actually increases the R-charge of the giant, and acting with the raising

Still a sum of squares



We need to try to solve for the ground state.

We can try converting the problem to c-number 
equations if we introduce generalized coherent states

a|zi = z|zi

The parameter z also belongs to a disk of radius 1.
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operator lowers the charge. We also have to be mindful of conventions with respect to

signs. When we chose the operators det(Z � �) as our giant graviton representatives, we

get minus signs in the expansion in terms of subdeterminants. Those minus signs appear

in the relative sign between �⇤ and a1 in the expressions above. If we would have chosen

the operators det(Z + �) instead, we would have gotten the result above with various signs

changed. Those sign di↵erences would reproduce the results of [13] exactly, while changing

from Cuntz oscillators to ordinary oscillators would account for the numerical factors in the

square roots appearing in equation (3.7), as well as the equation in page 23 describing the

boundary Hamiltonian.

III. GROUND STATE FOR OPEN SPIN CHAIN AND GEOMETRIC

INTERPRETATION

Our purpose in this section is to find the ground state for the Hamiltonian computed in

equation (31).

Hspin chain ' g2
YM

N

✓
�p
N

� a†1

◆✓
�⇤
p
N

� a1

◆
+ (a†1 � a†2)(a1 � a2) + . . .

�
(32)

The idea is to use trial wave function which is made of coherent states for the Cuntz oscil-

lators as described in equation (12) and to show that after minimizing with respect to the

coherent state parameters that it is an eigenstate of the Hamiltonian. Thus, we use a label

for the state as |z1, . . . zki, where the z
i

indicate coherent states for each Cuntz oscillator.

Using a
i

|z
i

i = z
i

|z
i

i we find that when we evaluate the Hamiltonian

hz1, . . . zk|Hspin chain|z1, . . . zki = g2
YM

N

2

4
����
�⇤
p
N

� z1

����
2

+
X

|z
i

� z
i+1|2 +

�����
�̃⇤
p
N

� z
k

�����

2
3

5

(33)

which is a simple quadratic function of the z
i

. When we minimize with respect to the z
i

parameters we find that

�⇤
p
N

� z1 = z1 � z2 = · · · = z
i

� z
i+1 = · · · = z

k

� �̃⇤
p
N

(34)

Adding these together we find that

�⇤
p
N

� �̃⇤
p
N

= (k + 1)(z
i

� z
i+1) (35)

To find ground state, coherent state ansatz

and minimize
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operator lowers the charge. We also have to be mindful of conventions with respect to

signs. When we chose the operators det(Z � �) as our giant graviton representatives, we

get minus signs in the expansion in terms of subdeterminants. Those minus signs appear

in the relative sign between �⇤ and a1 in the expressions above. If we would have chosen

the operators det(Z + �) instead, we would have gotten the result above with various signs

changed. Those sign di↵erences would reproduce the results of [13] exactly, while changing

from Cuntz oscillators to ordinary oscillators would account for the numerical factors in the

square roots appearing in equation (3.7), as well as the equation in page 23 describing the

boundary Hamiltonian.

III. GROUND STATE FOR OPEN SPIN CHAIN AND GEOMETRIC

INTERPRETATION

Our purpose in this section is to find the ground state for the Hamiltonian computed in

equation (31).

Hspin chain ' g2
YM

N

✓
�p
N

� a†1

◆✓
�⇤
p
N

� a1

◆
+ (a†1 � a†2)(a1 � a2) + . . .

�
(32)

The idea is to use trial wave function which is made of coherent states for the Cuntz oscil-

lators as described in equation (12) and to show that after minimizing with respect to the

coherent state parameters that it is an eigenstate of the Hamiltonian. Thus, we use a label

for the state as |z1, . . . zki, where the z
i

indicate coherent states for each Cuntz oscillator.

Using a
i

|z
i

i = z
i

|z
i

i we find that when we evaluate the Hamiltonian

hz1, . . . zk|Hspin chain|z1, . . . zki = g2
YM

N

2

4
����
�⇤
p
N

� z1

����
2

+
X

|z
i

� z
i+1|2 +

�����
�̃⇤
p
N

� z
k

�����

2
3

5

(33)

which is a simple quadratic function of the z
i

. When we minimize with respect to the z
i

parameters we find that

�⇤
p
N

� z1 = z1 � z2 = · · · = z
i

� z
i+1 = · · · = z

k

� �̃⇤
p
N

(34)

Adding these together we find that

�⇤
p
N

� �̃⇤
p
N

= (k + 1)(z
i

� z
i+1) (35)



We can add these to solve the linear equations
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operator lowers the charge. We also have to be mindful of conventions with respect to

signs. When we chose the operators det(Z � �) as our giant graviton representatives, we

get minus signs in the expansion in terms of subdeterminants. Those minus signs appear

in the relative sign between �⇤ and a1 in the expressions above. If we would have chosen

the operators det(Z + �) instead, we would have gotten the result above with various signs

changed. Those sign di↵erences would reproduce the results of [13] exactly, while changing
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III. GROUND STATE FOR OPEN SPIN CHAIN AND GEOMETRIC

INTERPRETATION

Our purpose in this section is to find the ground state for the Hamiltonian computed in

equation (31).

Hspin chain ' g2
YM

N

✓
�p
N

� a†1

◆✓
�⇤
p
N

� a1

◆
+ (a†1 � a†2)(a1 � a2) + . . .

�
(32)

The idea is to use trial wave function which is made of coherent states for the Cuntz oscil-

lators as described in equation (12) and to show that after minimizing with respect to the

coherent state parameters that it is an eigenstate of the Hamiltonian. Thus, we use a label

for the state as |z1, . . . zki, where the z
i

indicate coherent states for each Cuntz oscillator.

Using a
i

|z
i

i = z
i

|z
i

i we find that when we evaluate the Hamiltonian

hz1, . . . zk|Hspin chain|z1, . . . zki = g2
YM

N

2

4
����
�⇤
p
N

� z1

����
2

+
X

|z
i

� z
i+1|2 +

�����
�̃⇤
p
N

� z
k

�����

2
3

5

(33)

which is a simple quadratic function of the z
i

. When we minimize with respect to the z
i

parameters we find that

�⇤
p
N

� z1 = z1 � z2 = · · · = z
i

� z
i+1 = · · · = z

k

� �̃⇤
p
N

(34)

Adding these together we find that

�⇤
p
N

� �̃⇤
p
N

= (k + 1)(z
i

� z
i+1) (35)
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so that

z
i

� z
i+1 =

1

k + 1

 
�⇤p
N

� �̃⇤p
N

!
(36)

and the energy of this state is

E0 =
g2
YM

N

k + 1

�����
�p
N

� �̃p
N

�����

2

(37)

There are various important things to notice. First, when k = 0 (a chain with no sites), we

reproduce the energy of the configurations calculated in [1], to show that we have consistency

with the previous evaluation using the collective coordinate method. Also, if � = �̃, we get

a state with zero energy, and we reproduce the results first deduced in [5], with the same

ground state. More importantly, consider the following observation. The following identity

is an operator equation

�⇤p
N

� a1 +
X

(a
i

� a
i+1) + a

k

� �̃⇤p
N

=
�⇤p
N

� �̃⇤p
N

(38)

which can also be applied to any state | i. If we let | i
i

= (a
i

�a
i+1)| i, with | i0 and | i

k

defined to contain the other two summands in the operator equation, we have the equality

kX

i=0

| i
i

=

 
�⇤p
N

� �̃⇤p
N

!
| i (39)

This inequality is saturated only if the | i
i

are all the same vector. Using the inequality

between the quadratic mean and the arithmetic mean (suitably generalized to vector spaces),

we find that

1

k + 1

kX

i=0

|| i
i

|2 �

�����
1

k + 1

kX

i=0

| i
i

�����

2

=

�����
�p
N

� �̃p
N

�����

2
1

(k + 1)2
h | i (40)

For a normalized ket such that h | i = 1, we can translate this into the following inequality

h |Hspin chain| i = g2
YM

N
kX

i=0

|| i
i

|2 � g2
YM

N

(k + 1)

�����
�p
N

� �̃p
N

�����

2

= E0 (41)

which shows that the energy for any other state is higher than the one for the coherent state

we found. This shows we have in principle found the ground state for the system. The only

thing we are still left to show is that the state has finite norm, this is, the z
i

are such that

|z
i

| < 1. This is also easy to show. After all, the � are required to have norm less than
p
N
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[1]. Also, the equation (34) shows that the z
i

are equidistant of each other, and they form

an array of k evenly spaced points stretching between �⇤N�1/2 and �̃⇤N�1/2. Thus all of the

z
i

are in the unit disk and the state is normalizable.

What we see is that the z coordinates are very closely related to the � coordinates char-

acterizing giant gravitons. It is convenient to introduce coordinates for the giant gravitons

⇠ = �⇤N�1/2 and ⇠̃ = �̃⇤N�1/2. These coordinates are the complex conjugates of similar

named variables in [1]. This can be interpreted geometrically in the figure 1

z

z
z

j

j
¾

�
�

�

FIG. 1: Geometric layout of the z
i

in the ground state, as an interpolating chain of complex

numbers between ⇠ and ⇠̃.

The spin chain energy can be evaluated for a general state of the coherent state basis and

the energy can be interpreted as a collection of variables z
i

in the unit disk, with z0 = ⇠ and

z
k+1 = ⇠̃, and the expectation value of the energy of such a general configuration is a sum

of distances squared in the complex plane, namely

E(z0, . . . , zk+1) ' g2
YM

N
X

|z
i+1 � z

i

|2 (42)

which is a geometric equation. Although z0 and z
k+1 are really giant graviton coordinates,

the energy of the state does not really treat them di↵erently than the other z
i

(other than

being at the endpoints). We can reverse the logic and state that all the z
i

could be treated as

if they are D-brane coordinates of some sort. In this sense, the formula for the mass squared

starts looking like a sum over contributions where impurities are stretched between successive

D-branes, with gauge invariance requiring that for each incoming string to a brane there

is an outgoing string. This type of interpretation gives further evidence for the idea that

geometry at strong coupling can be understood in terms of open strings stretching between
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which is a geometric equation. Although z0 and z
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These can be pictured on the “free fermion disk”

The z coordinates also have a geometric interpretation!

12

[1]. Also, the equation (34) shows that the z
i

are equidistant of each other, and they form

an array of k evenly spaced points stretching between �⇤N�1/2 and �̃⇤N�1/2. Thus all of the

z
i

are in the unit disk and the state is normalizable.

What we see is that the z coordinates are very closely related to the � coordinates char-

acterizing giant gravitons. It is convenient to introduce coordinates for the giant gravitons

⇠ = �⇤N�1/2 and ⇠̃ = �̃⇤N�1/2. These coordinates are the complex conjugates of similar

named variables in [1]. This can be interpreted geometrically in the figure 1

z

z
z

j

j
¾

�
�

�

FIG. 1: Geometric layout of the z
i

in the ground state, as an interpolating chain of complex

numbers between ⇠ and ⇠̃.

The spin chain energy can be evaluated for a general state of the coherent state basis and

the energy can be interpreted as a collection of variables z
i

in the unit disk, with z0 = ⇠ and

z
k+1 = ⇠̃, and the expectation value of the energy of such a general configuration is a sum

of distances squared in the complex plane, namely

E(z0, . . . , zk+1) ' g2
YM

N
X

|z
i+1 � z

i

|2 (42)

which is a geometric equation. Although z0 and z
k+1 are really giant graviton coordinates,

the energy of the state does not really treat them di↵erently than the other z
i

(other than

being at the endpoints). We can reverse the logic and state that all the z
i

could be treated as

if they are D-brane coordinates of some sort. In this sense, the formula for the mass squared

starts looking like a sum over contributions where impurities are stretched between successive

D-branes, with gauge invariance requiring that for each incoming string to a brane there

is an outgoing string. This type of interpretation gives further evidence for the idea that

geometry at strong coupling can be understood in terms of open strings stretching between



End result:

Full calculation produces a spin chain of Z intertwined in 
between the Y, and for ground state of spin chain

En ' n+ n�1g2YM |�� �̃|2 '
q

n2 + g2YM |�� �̃|2

Starts showing an emergent Lorentz invariance for 
massive W particles in

the worldsheet fluctuations of giant graviton.
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• There are extra first derivative terms colored in red. These are the leftovers from
removing the terms that wrap around in the closed spin chain. Is there a way to get
rid of them?
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= 0 in ground state

Gives next order in relativistic correction



From the gravity side

Need to modify a calculation in sigma model on a three 
sphere times time.

! H. -Y. Chen, N. Dorey and K. Okamura, “Dyonic giant magnons,” JHEP 0609, 024 
(2006) [hep-th/0605155] 

Chrysostomos Kalousios, Marcus Spradlin, and Anastasia Volovich,JHEP, 0703:020, 
2007

�� J =

r
J2
2 +

�

4⇡2
|⇠ � ⇠̃|2

Final answer is



Why? Central charge extension

Y ! [Z, Y ]

Acting on a Y

p
N(a†i � a†i+1)

in Cuntz basis
Beisert hep-th/0511082



OR

Y ! [Y, @Z ]

(ai � ai+1)/
p
N

And remember that  our ground states are 
eigenstates of these lowering operators. It gives

zi � zi+1



Total central charge

C =
X

(zi � zi+1) = z0 � zn = ⇠ � ⇠̃

independent of the state, but sourced by D-branes



Small representation of centrally extended PSU(2|2)

E =
q
n2 + g2N |⇠ � ⇠̃|2

Exact result to all orders



Now deform N=4 SYM

W ' Tr(XY Z � qXZY )

Leigh-Strassler

Special case
qq⇤ = 1

Preserves integrability
q = exp(2i�)



The q can be removed by twisting (D.B + Cherkis, 
hep-th/0405215)

This effectively changes

⇠̃ ! ⇠̃qn

H1�loop

=
X

(a†
i

� q⇤q†
i+1)(ai � qa

i+1)

http://arxiv.org/abs/hep-th/0405215
http://arxiv.org/abs/hep-th/0405215


E =
q

n2 + g2N |q�n/2⇠ � qn/2⇠̃|2

Dispersion relation, which is relativistic + 
something that looks like a lattice dispersion relation. 



Geometric limits: “lots of operators with small 
anomalous dimensions”



You have a lot of supergravity and field theory modes on 
branes that do not become stringy, rather, effective field 

theory on a SUGRA background.



Simplest one

qk = 1 + g2N ! 1
+ g2N |⇠ � ˜⇠|2 fixed or scaled

Only n=km survives at low energies 
This indicates a theory on giants of the form

S3/Zk



We recover light modes when

We can now consider also “images” 

⇠̃ = ⇠qs

n = �s mod k

Indicates a relative Wilson line on the quotient sphere.



Another limit, small beta

E '
q
n2 + g2N |⇠ � ⇠̃ � ⇠i�n+ ⇠̃(i�)n+ . . . |2

Now take
⇠ = ⇠̃

E '
p
n2 + g2N |⇠|2�2n2

Is of order n if
g2N�2 ' 1



Interpretation

E ' An

Think about this as the spectrum of a relativistic 
particle on a circle

We start seeing cycles getting squashed

A ' 1

R(⇠)
=

q
1 + |⇠|2g2YMN�2



Another limit, small beta

E '
q
n2 + g2N |⇠ � ⇠̃ � ⇠i�n+ ⇠̃(i�)n+ . . . |2

Now take

⇠ =

˜⇠ exp(�2i✓)

E '
p

n2 + g2N |⇠|2�2(n+ ✓/�)2

When we complete the square, we get a
“position dependent Wilson line”



This has to be interpreted as the 

Hµ⌫⇢

Field strength in gravity.



Conclusion

• Collective coordinates need to be introduced to resolve a degeneracy 
problem (geometric zero mode angle) 

• Can start obtaining effective actions for giant gravitons with a  clean 
geometric interpretation.

• Attaching strings is no problem, and we start seeing emergent Lorentz 
symmetry in bulk.

• Can have results to all orders using central charge arguments: truly Lorentzian

• We can play with final answers to understand when  we can have geometric 
limits. Can clarify when SUGRA is valid



Things to do

• Non-integrable deformation |q| different than 1

• Understand higher loop orders.

• Interacting open strings: can we understand splitting and joining contributions 
to derive effective interacting field theory on branes?

• Branes at angles?

• Multiple brane combinatorics ( reintroduce the technology of Young Tableaux 
more seriously with collective coordinates takes into account: this is “easy” 
but requires being careful)


