> The a-theorem: Constructing the A-function for a general theory

> > Colin Poole Ian Jack

Department of Mathematical Sciences, University of Liverpool

3rd February 2015

< ロ > < 同 > < 回 > < 回 > .

э

2 The a-theorem and its consequences

C. Poole, I. Jack The A-function for a general theory

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

What is the a-theorem?

Consider a QFT with couplings g_l at energy scale μ .

- (Zam., 1986) For 2D QFT, ∃ c(μ, g_l) decreasing monotonically under RG flow. At a fixed point g^{*}_l, c(μ, g^{*}_l) = c, the central charge.
- (Cardy, 1988) What about 4D? Possible that ∃ a(µ, g_I) with monotonic behaviour under RG flow (*Strong*), or ∃ a(µ, g_I) satisfying (a_{UV} − a_{IR}) > 0 (*Weak*).
- Name a-theorem comes from only possible candidate: $\langle T^{\mu}_{\mu} \rangle = -\mathbf{c}R$ in 2D, $\langle T^{\mu}_{\mu} \rangle = cF - \frac{1}{4}\mathbf{a}G - \frac{1}{72}gR^2 + ...$ in 4D.

Why bother?

- Flowing towards IR, a(μ, g_l) should decrease and approach a new RG fixed point, defining a low-energy effective theory with less "degrees of freedom".
- Monotonic flow will help address the possibility of limit cycles or chaotic behaviour in RG flows, showing they cannot occur for a renormalizable 4D QFT.
- In 2D scale-invariance implies conformal invariance (Pol., 1988); a-theorem may give insight as to whether something similar holds in 4D.

What's been done?

- 1990: Jack and Osborn criteria for the a-theorem; perturbative a-theorem for sufficiently weak coupling.
- 2004: Intriligator et al explicit a for SUSY theories.
- 2011: Komargodski and Schwimmer weak a-theorem using 4-dilaton amplitude.
- 2014: Jack and Osborn how are perturbative quantities constrained?

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Theory Non-supersymmetric theories Supersymmetric theories

The theoretical preamble

Take a 4D QFT with couplings $\{g'\}$.

- $\exists A \text{ such that } \partial_I A = T_{IJ} \beta^J$.
- For RG fixed point g^* , $\beta^I(g^*) = 0$ and $\frac{1}{4}A = a$. For non-RG fixed points, *A* arbitrary up to $\beta^I H_{IJ}\beta^J$.
- $G_{IJ} = T_{(IJ)}$ satisfies $\mu \frac{d}{d\mu} A = \beta^I \partial_I A = \beta^I G_{IJ} \beta^J$; shows flow is monotonic.
- If \exists positive-definite G_{IJ} , the strong a-theorem holds.
- Multiplying by dg^{I} gives $dA = dg^{I}T_{IJ}\beta^{J}$, i.e. first order differential equation: solve for *A*.

ヘロト 人間 ト イヨト イヨト

Theory Non-supersymmetric theories Supersymmetric theories

Non-supersymmetric theories

Consider a general renormalizable gauge theory with simple gauge group G, n_{ϕ} real scalars, n_{ψ} Weyl fermions. Couplings are $\{g^I\} = \{Y, \bar{Y}, \lambda, g\}$, scalar/fermion gauge generators are $t_A^{\phi} = -t_A^{\phi T}$, t_A^{ψ} respectively. Assemble matrices

$$\begin{aligned} \mathbf{y}_{a} &= \begin{pmatrix} \mathbf{Y}_{a} & \mathbf{0} \\ \mathbf{0} & \bar{\mathbf{Y}}_{a} \end{pmatrix}, \, \hat{\mathbf{y}}_{a} &= \begin{pmatrix} \bar{\mathbf{Y}}_{a} & \mathbf{0} \\ \mathbf{0} & \mathbf{Y}_{a} \end{pmatrix}, \, \mathbf{T}_{A} &= \begin{pmatrix} t_{A}^{\psi} & \mathbf{0} \\ \mathbf{0} & -t_{A}^{\psi*} \end{pmatrix}, \\ \hat{\mathbf{T}}_{A} &= -\mathbf{T}_{A}^{T} \end{aligned}$$

- Assume $T_{IJ} = G_{IJ}$ is symmetric for simplicity (works for first three orders).
- Lowest order A is $A^{(2)}$: solve $d_g A^{(2)} = dg \ G_{gg}^{(1)} \ \beta_g^{(1)}$
- Next lowest is $A^{(3)}$: solve $d_g A^{(3)} = dg \ G^{(1)}_{gg} \beta^{(2)}_g + dg \ G^{(2)}_{gg} \ \beta^{(1)}_g, \ d_y A^{(3)} = dy \ G^{(2)}_{y\bar{y}} \beta^{(1)}_{\bar{y}}$

Theory Non-supersymmetric theories Supersymmetric theories

Non-supersymmetric theories Diagrammatical notation

General expressions for β functions become long and complex:

$$\beta_{y\,a}^{(1)} = \frac{1}{2} (y_b \hat{y}_b - 6g^2 \hat{C}^{\psi}) y_a + \frac{1}{2} y_a (\hat{y}_b y_b - 6g^2 C^{\psi}) + \frac{1}{2} tr(y_a \hat{y}_b) y_b + 2\hat{y}_b y_a \hat{y}_b$$

One-loop Yukawa isn't too bad, but Two-loop has 29 terms... Introduce Diagrammatical notation:

Theory Non-supersymmetric theories Supersymmetric theories

Non-supersymmetric theories Solutions and constraints

For complete diagrammatic details, including definitions of β function coefficients, see *arXiv:1411.1301v1*.

- First non-trivial results are obtained from $A^{(4)}$, determined by $d_y A^{(4)} = dy \ G_{y\bar{y}}^{(2)} \beta_{\bar{y}}^{(2)} + dy \ G_{y\bar{y}}^{(3)} \beta_{\bar{y}}^{(1)}$ and $d_\lambda A^{(4)} = d\lambda \ G_{\lambda\lambda^*}^{(3)} \beta_{\lambda^*}^{(1)}$ (modulo purely gauge terms).
- $G_{y\bar{y}}^{(2)}$ and $G_{\lambda\lambda^*}^{(3)}$ consist of only one possible tensor structure each, but $G_{y\bar{y}}^{(3)}$ has 10 possible structures.
- Allowing β function and tensor structure coefficients to be arbitrary, $A^{(4)}$ can be solved for any renormalization scheme, up to $\beta_y^{(1)} \circ \beta_{\bar{y}}^{(1)}$, where $x \circ x = x^{ijk} x_{ijk}$.

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

Theory Non-supersymmetric theories Supersymmetric theories

Non-supersymmetric theories Solutions and constraints

A solution of the ODEs produces linear equations relating the coefficients of $A^{(4)}$, $G^{(2)}$, $G^{(3)}$, β_y and β_λ . Eliminating all *A* and metric coefficients leaves 6 consistency conditions between coefficients in $\beta_y^{(2)}$.

Theory Non-supersymmetric theories Supersymmetric theories

Non-supersymmetric theories Solutions and constraints

- Consistency conditions are independent of renormalization scheme.
- Change in scheme corresponds to coupling constant redefinition: change in $\beta^{(1)}$ induces change in $\beta^{(2)}$ via $\delta\beta_l^{(2)} = \left(\beta_J^{(1)}\frac{\delta}{\delta g^J}\right)\delta g_l \left(\delta g_J\frac{\delta}{\delta g^J}\right)\beta_l^{(1)}$
- Consistency conditions invariant under arbitrary redefinition must hold in all schemes.
- $d_g A^{(4)} = dg \ G_{gg}^{(3)} \beta_g^{(1)} + dg \ G_{gg}^{(2)} \beta_g^{(2)} + dg \ G_{gg}^{(1)} \beta_g^{(3)}$, hence can determine Yukawa/scalar terms in $\beta_g^{(3)}$ using only $\beta_g^{(1)}$ and $\beta_g^{(2)}$.

ヘロト 人間 ト イヨト イヨト

Theory Non-supersymmetric theories Supersymmetric theories

Supersymmetric theories

Supersymmetric theories work pretty much the same way, using the same structures G_{IJ} adapted to the supersymmetric case. For a general $\mathcal{N} = 1$ theory with a chiral (and anti-chiral) superfield,

- $\lambda \equiv \lambda(\mathbf{y}, \bar{\mathbf{y}}, \mathbf{g})$, so $\{\mathbf{g'}\} = \{\mathbf{y}, \bar{\mathbf{y}}, \mathbf{g}\}$
- Anomalous dimension $\gamma^{(1)} = \frac{1}{2} y^{imn} \bar{y}_{mnj} 2g^2 (T^2)^i_{j}$

•
$$\beta_{\mathbf{y}} = (\gamma * \mathbf{y})^{ijk} \equiv (\gamma)^{i}{}_{m}\mathbf{y}^{mjk} + (\gamma)^{j}{}_{m}\mathbf{y}^{imk} + (\gamma)^{k}{}_{m}\mathbf{y}^{ijm}$$

 $A^{(4)}$ has only 9 terms in the supersymmetric case, compared to the 28 terms in the non-supersymmetric case.

Theory Non-supersymmetric theories Supersymmetric theories

Supersymmetric theories Does SUSY match Non-SUSY?

Although $A^{(4)}$ holds in the non-SUSY case regardless of scheme, one must use a SUSY-preserving scheme to compare results.

- Most convenient SUSY scheme is NSVZ since ∃ an exact β_g; NSVZ coincides with dimensional reduction (DRED) to two loops.
- DRED can be used for non-SUSY theories if treated properly, so the non-SUSY DRED A⁽⁴⁾ should reduce to the SUSY DRED A⁽⁴⁾.
- Correctly defining SUSY *y* matrices to include gaugino fields, the results do indeed match.

Supersymmetric theories The A-equation

There is a potential, nonperturbative A candidate for SUSY gauge theories with n_c chiral scalar multiplets:

$$A = \frac{1}{12}(n_c + 9n_v) - \frac{1}{2}tr(\gamma)^2 + \frac{1}{3}tr(\gamma)^3 + \Lambda \circ \beta_{\bar{y}} + \beta_y \circ H \circ \beta_{\bar{y}} + n_v \lambda \tilde{\beta}_g$$

If this holds, then calculating $\partial_y A$ and requiring $\partial_y A = T_{IJ}\beta^J$ forces (for some calculable constant θ)

$$3\bar{y}\cdot\Lambda-2\lambda C_{R}=\gamma-\gamma^{2}+\Theta\circ\beta_{\bar{y}}+\theta\tilde{\beta}_{g}$$

This is the Λ -equation, and allows restrictions on the form of anomalous dimensions for $\mathcal{N}=1$ SUSY. Specialising to $\mathcal{N}=2$ gives many more constraints at higher orders.

Summary

The Λ -equation $\gamma^{(3)}$

Supersymmetric theories The 3-loop Anomalous Dimension

• Similar to A, one can calculate perturbatively

•
$$3\bar{y}\cdot\Lambda^{(1)}-2\lambda^{(1)}C_R=\gamma^{(1)}$$

•
$$3\bar{y} \cdot \Lambda^{(2)} - 2\lambda^{(2)}C_R = \gamma^{(2)} - \gamma^{(1)2} + \Theta^{(1)}\beta_{\bar{y}}^{(1)} + \dots$$

•
$$3\bar{y} \cdot \Lambda^{(3)} - 2\lambda^{(3)}C_R = \gamma^{(3)} - \gamma^{(2)}\gamma^{(1)} - \gamma^{(1)}\gamma^{(2)} + \Theta^{(2)}\beta_{\bar{y}}^{(2)} + \dots$$

A now plays the role of *A*, in that by determining A with arbitrary coefficients one can derive consistency conditions on $\gamma^{(3)}$. There are eight such conditions, which are satisfied by both DRED and NSVZ versions of $\gamma^{(3)}$. Reducing further to $\mathcal{N} = 2$ gives yet more conditions that are also satisfied.

- Complete calculation (up to purely gauge terms) of A⁽⁴⁾ for general renormalizable QFT.
- Derived scheme-independent consistency conditions.
- Verified by comparison with both general 3-loop single gauge β-function and Standard Model 3-loop gauge β-function.
- Demonstrated restriction on the form of $\gamma^{(3)}$ via the A-equation; almost solvable, constraints satisfied by actual $\gamma^{(3)}$ calculation.

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

э.

Further work:

- General A⁽⁵⁾ calculation, starting with just scalar/fermion couplings, to predict form/consistency conditions for higher-order general β-functions. Metric no longer symmetric at this order.
- Consider other dimensions: analogous work for 6D ϕ^3 theory up to $A^{(5)}$ almost complete. 6D interesting since leading order metric is *negative*-definite, giving opposite conclusion to 4D case.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Key sources:

- I. Jack, H. Osborn, Analogs For The c-Theorem For Four-dimensional Renormalizable Field Theories, Nucl. Phys. B343 (1990) 647
- I. Jack, H. Osborn, Constraints on RG flow for Four-dimensional Quantum Field Theories, Nucl. Phys. B883 (2014) 425
- I. Jack, C. Poole, The a-function for gauge theories, arXiv:1411.1301v1