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What is the a-theorem?

Consider a QFT with couplings gI at energy scale µ.

(Zam., 1986) For 2D QFT, ∃ c(µ,gI) decreasing
monotonically under RG flow. At a fixed point g∗

I ,
c(µ,g∗

I ) = c, the central charge.

(Cardy, 1988) What about 4D? Possible that ∃ a(µ,gI) with
monotonic behaviour under RG flow (Strong), or ∃ a(µ,gI)
satisfying (aUV − aIR) > 0 (Weak).

Name a-theorem comes from only possible candidate:
〈T µ

µ〉 = −cR in 2D, 〈T µ
µ〉 = cF − 1

4aG − 1
72gR2 + ... in 4D.
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Why bother?

Flowing towards IR, a(µ,gI) should decrease and
approach a new RG fixed point, defining a low-energy
effective theory with less "degrees of freedom".

Monotonic flow will help address the possibiliy of limit
cycles or chaotic behaviour in RG flows, showing they
cannot occur for a renormalizable 4D QFT.

In 2D scale-invariance implies conformal invariance (Pol.,
1988); a-theorem may give insight as to whether
something similar holds in 4D.
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What’s been done?

1990: Jack and Osborn - criteria for the a-theorem;
perturbative a-theorem for sufficiently weak coupling.

2004: Intriligator et al - explicit a for SUSY theories.

2011: Komargodski and Schwimmer - weak a-theorem
using 4-dilaton amplitude.

2014: Jack and Osborn - how are perturbative quantities
constrained?
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Theory
Non-supersymmetric theories
Supersymmetric theories

The theoretical preamble

Take a 4D QFT with couplings {gI}.

∃A such that ∂IA = TIJβ
J .

For RG fixed point g∗, βI(g∗) = 0 and 1
4A = a. For non-RG

fixed points, A arbitrary up to βIHIJβ
J .

GIJ = T(IJ) satisfies µ d
dµA = βI∂IA = βIGIJβ

J ; shows flow
is monotonic.

If ∃ positive-definite GIJ , the strong a-theorem holds.

Multiplying by dgI gives dA = dgITIJβ
J , i.e. first order

differential equation: solve for A.
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Non-supersymmetric theories

Consider a general renormalizable gauge theory with simple
gauge group G, nφ real scalars, nψ Weyl fermions. Couplings
are {gI} = {Y , Ȳ , λ,g}, scalar/fermion gauge generators are
tφA = −tφT

A , tψA respectively. Assemble matrices

ya =

(

Ya 0
0 Ȳa

)

, ŷa =

(

Ȳa 0
0 Ya

)

, TA =

(

tψA 0
0 −tψ∗A

)

,

T̂A = −T T
A

Assume TIJ = GIJ is symmetric for simplicity (works for first
three orders).

Lowest order A is A(2): solve dgA(2) = dg G(1)
gg β

(1)
g

Next lowest is A(3): solve
dgA(3) = dg G(1)

gg β
(2)
g + dg G(2)

gg β
(1)
g , dyA(3) = dy G(2)

yȳ β
(1)
ȳ
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Non-supersymmetric theories
Diagrammatical notation

General expressions for β functions become long and complex:

β
(1)
y a =

1
2
(yb ŷb − 6g2Ĉψ)ya +

1
2

ya(ŷbyb − 6g2Cψ)+

1
2

tr(yaŷb)yb + 2ŷbyaŷb

One-loop Yukawa isn’t too bad, but Two-loop has 29 terms...
Introduce Diagrammatical notation:

i

kj l

k

j

i

i j
i j i j

yijk ≡ yi λ kl
ij tr(yi ȳj) g2 Cφ j

i g2 Cψ j
i
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Non-supersymmetric theories
Solutions and constraints

For complete diagrammatic details, including definitions of β
function coefficients, see arXiv:1411.1301v1.

First non-trivial results are obtained from A(4), determined
by dyA(4) = dy G(2)

yȳ β
(2)
ȳ + dy G(3)

yȳ β
(1)
ȳ and

dλA(4) = dλ G(3)
λλ∗β

(1)
λ∗ (modulo purely gauge terms).

G(2)
yȳ and G(3)

λλ∗ consist of only one possible tensor structure

each, but G(3)
yȳ has 10 possible structures.

Allowing β function and tensor structure coefficients to be
arbitrary, A(4) can be solved for any renormalization
scheme, up to β

(1)
y ◦ β

(1)
ȳ , where x ◦ x = x ijkxijk .
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Non-supersymmetric theories
Solutions and constraints

A A

B

A A

B

(1)y

(1)y

A solution of the ODEs produces lin-
ear equations relating the coefficients
of A(4), G(2), G(3), βy and βλ. Eliminat-
ing all A and metric coefficients leaves
6 consistency conditions between co-
efficients in β

(2)
y .
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Non-supersymmetric theories
Solutions and constraints

Consistency conditions are independent of renormalization
scheme.

Change in scheme corresponds to coupling constant
redefinition: change in β(1) induces change in β(2) via

δβ
(2)
I =

(

β
(1)
J

δ
δgJ

)

δgI −
(

δgJ
δ
δgJ

)

β
(1)
I

Consistency conditions invariant under arbitrary
redefinition - must hold in all schemes.

dgA(4) = dg G(3)
gg β

(1)
g + dg G(2)

gg β
(2)
g + dg G(1)

gg β
(3)
g , hence

can determine Yukawa/scalar terms in β
(3)
g using only β

(1)
g

and β
(2)
g .
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Supersymmetric theories

Supersymmetric theories work pretty much the same way,
using the same structures GIJ adapted to the supersymmetric
case. For a general N = 1 theory with a chiral (and anti-chiral)
superfield,

λ ≡ λ(y , ȳ ,g), so {gI} = {y , ȳ ,g}

Anomalous dimension γ(1) = 1
2y imnȳmnj − 2g2(T 2)i

j

βy =
(

γ ∗ y
)ijk

≡ (γ)i
mymjk + (γ)j

my imk + (γ)k
my ijm

A(4) has only 9 terms in the supersymmetric case, compared to
the 28 terms in the non-supersymmetric case.

C. Poole, I. Jack The A-function for a general theory



Introduction: What is the a-theorem?
The a-theorem and its consequences

The Λ-equation
Summary

Theory
Non-supersymmetric theories
Supersymmetric theories

Supersymmetric theories
Does SUSY match Non-SUSY?

Although A(4) holds in the non-SUSY case regardless of
scheme, one must use a SUSY-preserving scheme to compare
results.

Most convenient SUSY scheme is NSVZ since ∃ an exact
βg ; NSVZ coincides with dimensional reduction (DRED) to
two loops.

DRED can be used for non-SUSY theories if treated
properly, so the non-SUSY DRED A(4)] should reduce to
the SUSY DRED A(4).

Correctly defining SUSY y matrices to include gaugino
fields, the results do indeed match.
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The Λ-equation
γ
(3)

Supersymmetric theories
The Λ-equation

There is a potential, nonperturbative A candidate for SUSY
gauge theories with nc chiral scalar multiplets:

A = 1
12(nc +9nv)−

1
2 tr(γ)2+ 1

3 tr(γ)3 +Λ◦βȳ +βy ◦H ◦βȳ +nvλβ̃g

If this holds, then calculating ∂yA and requiring ∂y A = TIJβ
J

forces (for some calculable constant θ)

3ȳ · Λ− 2λCR = γ − γ2 +Θ ◦ βȳ + θβ̃g

This is the Λ-equation, and allows restrictions on the form of
anomalous dimensions for N = 1 SUSY. Specialising to N = 2
gives many more constraints at higher orders.
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The Λ-equation
γ
(3)

Supersymmetric theories
The 3-loop Anomalous Dimension

Similar to A, one can calculate perturbatively

3ȳ · Λ(1) − 2λ(1)CR = γ(1)

3ȳ · Λ(2) − 2λ(2)CR = γ(2) − γ(1)2 +Θ(1)β
(1)
ȳ + ...

3ȳ ·Λ(3)−2λ(3)CR = γ(3)−γ(2)γ(1)−γ(1)γ(2)+Θ(2)β
(2)
ȳ + ...

Λ now plays the role of A, in that by determining Λ with arbitrary
coefficients one can derive consistency conditions on γ(3).
There are eight such conditions, which are satisfied by both
DRED and NSVZ versions of γ(3). Reducing further to N = 2
gives yet more conditions that are also satisfied.
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Complete calculation (up to purely gauge terms) of A(4) for
general renormalizable QFT.

Derived scheme-independent consistency conditions.

Verified by comparison with both general 3-loop single
gauge β-function and Standard Model 3-loop gauge
β-function.

Demonstrated restriction on the form of γ(3) via the
Λ-equation; almost solvable, constraints satisfied by actual
γ(3) calculation.
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Further work:

General A(5) calculation, starting with just scalar/fermion
couplings, to predict form/consistency conditions for
higher-order general β-functions. Metric no longer
symmetric at this order.

Consider other dimensions: analogous work for 6D φ3

theory up to A(5) almost complete. 6D interesting since
leading order metric is negative-definite, giving opposite
conclusion to 4D case.
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