"Pushing and pinching charge at strong coupling" Talk at Univ. of Liverpool

Aristomenis Donos

Durham University

April 2015

Based on:

1311.3292, 1401.5077, 1406.4742 with J. P. Gauntlett 1406.1659 with M. Blake 1412.2003 with M. Blake and D. Tong 1 Introduction/Motivation

- 2 The Holographic Lab
- 3 Holographic Charge Oscillations
- 4 Summary / Outlook

Outline

1 Introduction/Motivation

2 The Holographic Lab

- 3 Holographic Charge Oscillations
- 4 Summary / Outlook

Some fun homework for the holographista:

- Incoherent transport
- Anomalous scaling of Hall angle
- Part II

Charge screening in holographic theories

Charge transport in real materials

Materials with charged d.o.f. can be

- Coherent metals with a well defined Drude peak
- Insulators
- Incoherent conductors of electricity
- Interactions expected to become important in the incoherent phase → Possible description in AdS/CFT?

The Cuprates

The Cuprates are real life example of :

- Incoherent transport
- Anomalous scaling of conductivity and Hall angle with T

$$o_{DC} \propto T, \quad \theta_H \propto T^{-2}$$

Anomalous Hall angle scaling

- Introducing a magnetic field B results in currents in two directions J_x and J_y .
- There is σ_{xx} and σ_{yx}
- Hall angle is $\theta_H = \sigma_{xy} / \sigma_{xx}$
- Fermi liquids + lattice Umklapp scattering lead to

$$\sigma_{DC}^{B=0} \sim T^{-2}, \quad \theta_H \sim T^{-2}$$

- More generally, slow momentum relaxation predicts $\sigma_{DC}^{B=0}$ and θ_H scale the same way with temperature [Hartnoll, Kovtun, Muller, Sachdev]
- Strange metals surprisingly have

$$\sigma_{DC}^{B=0} \sim T^{-1}, \quad \theta_H \sim T^{-2}$$

Holography evades that? Yes!

1 Introduction/Motivation

2 The Holographic Lab

3 Holographic Charge Oscillations

4 Summary / Outlook

The recipe says:

Field Theory Start with CFT_d Chemical potential μ Finite T2-point function $G_{JJ}(\omega)$ $\begin{array}{c} \underline{\textbf{Bulk}}\\ AdS_{d+1} \text{ Asymptotics}\\ U(1) \text{ electric charge}\\ \text{ Killing horizon}\\ \text{Bulk perturbation } \delta A_x, \dots \end{array}$

Use Kubo's formula

$$\sigma(\omega) = \frac{G_{JJ}(\omega)}{\imath \omega}$$

Perfect Holographic Conductor

Do it in D = 4 Einstein-Maxwell with AdS asymptotics:

$$\mathcal{L}_{EM} = R - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + 12$$

$$ds_4^2 = -U(r) dt^2 + U(r)^{-1} dr^2 + r^2 \left(dx_1^2 + dx_2^2 \right)$$

$$A = a(r) dt$$

Background black hole has temperature T , energy $E, \mbox{ pressure } P, \mbox{ entropy } s$ and charge q.

Perfect Holographic Conductor

- To calculate conductivity need to source $\delta A_x = -e^{-\imath\omega t} \frac{E_x}{\imath\omega}$ on the boundary
- Momentum (δg_{tx}) couples because of background charge

[Hartnoll, Herzog]

Conserved momentum \rightarrow Infinite DC conductivity \rightarrow Explicitly break translations on the boundary theory

Classical Drude model

• Without collisions $\tau \to \infty \Rightarrow \sigma = \frac{nq^2}{m} \left(\delta(\omega) + \frac{\imath}{\omega} \right)$

Classical Drude model

This is how it looks like

- $\hfill\blacksquare$ Apart from electric currents one also has a thermal current Q
- More generally, transport coefficients are packaged in a matrix

$$\left(\begin{array}{c}J\\Q\end{array}\right) = \left(\begin{array}{c}\sigma & \alpha T\\\bar{\alpha}T & \bar{\kappa}T\end{array}\right) \left(\begin{array}{c}E\\-(\nabla T)/T\end{array}\right)$$

• With ∇T a temperature gradient

Holographic Lattice

To add momentum dissipation introduce a UV - IR benign lattice:

- Keep UV fixed point \Rightarrow relevant deformation $\mathcal{O}(x)$
- Drude physics $\Rightarrow T = 0$ horizon restores translations
- Charge density is a universal relevant operator \Rightarrow Impose $A_t = \mu(x) J^t(x) r^{-1} + \cdots$ [Hartnoll, Hofman][Horowitz, Santos, Tong] $\mu(x) = \mu_0 + A(x), \quad \langle A \rangle_L = 0$

• $\mu_0 \Rightarrow$ chemical potential, $A'(x) \Rightarrow$ periodic electric field

Inhomogeneous Lattices

The task is:

1) Solve elliptic non-linear PDEs to find background rippled black holes

2) Solve non-elliptic linear PDEs to find perturbations around numerical background to extract conductivity

[Horowitz, Santos, Tong] [D&G]

Inhomogeneous Lattices

The task is:

1) Solve elliptic non-linear PDEs to find background rippled black holes

2) Solve non-elliptic linear PDEs to find perturbations around numerical background to extract conductivity

[Horowitz, Santos, Tong] [D&G]

Inhomogeneous Lattices

- Our Drude peaks are there
- Nice, now get rid of them!

RG/Holographic picture

- I Charge dominated RG flows, translations restored in IR \rightarrow Coherent transport
- II Lattice (+charge) dominated RG flows, translations broken in IR \rightarrow incoherent transport [AD, Hartnoll] [AD, Gauntlett]

Q-lattices

Consider a simple model with a global U(1) in addition to the gauged one [AD, Gauntlett]

$$S = \int d^4x \sqrt{-g} \left[R + 6 - \frac{1}{4} F^2 - |\partial \phi|^2 - m^2 |\phi|^2 \right]$$

along with the ansatz

$$\begin{split} ds^2 &= -U(r) \, dt^2 + U(r)^{-1} \, dr^2 + e^{2V_1(r)} \, dx_1^2 + e^{2V_2(r)} \, dx_2^2 \\ A &= a(r) \, dt, \qquad \phi = e^{\imath k x_1} \, \varphi(r) \end{split}$$

- x_1 dependence drops out due to global U(1)
- Leads to ODEs both for background and perturbation
- Significant simplification
- Two real scalars with $\mathcal{O}_1 \sim \cos(kx)$, $\mathcal{O}_2 \sim \sin(kx)$

Conductivity from Q-lattices

Can model Metal - Insulator transitions

Holography can describe incoherent transport!

RG/Holographic Picture

- QNM on the axis \rightarrow coherent transport
- QNM off the axis \rightarrow incoherent transport

Recent check and also transition T [Davison, Gouteraux]

More general Q-lattices

Consider a more general situation where the instead of \mathbb{C}^2

$$S = \int d^4x \sqrt{-g} \left[R - V(|z|) - \frac{1}{4}Z(|z|)F^2 - G(|z|)|\partial z|^2 \right]$$

- Slightly more general setup
- Imagine some complex target instead of \mathbb{C} $G(|z|)|dz|^2 \sim d\phi^2 + f(\phi) d\chi^2$
- The phase is compact and translations are broken by setting $\chi = k x_1$
- Closely related models with axions [Andrade, Withers]

A polar decomposition yields

$$\mathcal{L} = R - \frac{1}{2} \left[(\partial \varphi)^2 + \Phi_1 (\varphi) (\partial \chi_1)^2 + \Phi_2 (\varphi) (\partial \chi_2)^2 \right] + V (\varphi) - \frac{Z (\varphi)}{4} F^2$$

The background ansatz in this notation just reduces to

$$ds_4^2 = -U(r) dt^2 + U(r)^{-1} dr^2 + e^{2V_1(r)} dx_1^2 + e^{2V_2(r)} dx_2^2$$

$$A = a(r) dt, \quad \phi = \phi(r)$$

$$\chi_1 = k_1 x_1, \quad \chi_2 = k_2 x_2$$

Metallic - Insulating ground states

Imagining situations where

$$\Phi_i(\varphi) \sim e^{\delta_i \varphi}, \quad Z \sim e^{\gamma \varphi}, \quad V \sim e^{\alpha \varphi}$$

[AD, Gauntlett][Gouteraux]

$$ds^{2} = -r^{u} dt^{2} + r^{-u} dr^{2} + r^{v_{1}} dx_{1}^{2} + r^{v_{2}} dx_{2}^{2}$$

$$\phi = -\kappa \ln r, \quad A = r^{a} dt, \quad \chi_{1} = k_{1} x_{1}, \quad \chi_{2} = k_{2} x_{2}$$

- **Exponents** u, v_1 , ... fixed by Lagrangian parameters δ_i , γ , α .
- Use perturbative argument to find small *T* behaviour on the horizon e.g.

$$\phi_{r=r_+} \sim -\kappa' \ln T, \quad s \sim T^{\lambda}$$

So what?

Ohm/Fourier Law

More generally, combine E with thermal gradient ∇T to describe thermoelectric effect

$$\left(\begin{array}{c}J\\Q\end{array}\right) = \left(\begin{array}{c}\sigma & \alpha T\\\bar{\alpha}T & \bar{\kappa}T\end{array}\right) \left(\begin{array}{c}E\\-(\nabla T)/T\end{array}\right)$$

 Analytic argument to express DC transport coefficients in terms of bh horizon data

$$\sigma_{DC} = \left[\frac{Z(\phi)s}{4\pi e^{2V_1}} + \frac{4\pi q^2}{k_1^2 \Phi_1(\phi)s}\right]_{r=r_+} = \sigma_{ccs} + \sigma_{dis}$$
$$\bar{\kappa}_{DC} = \left[\frac{4\pi sT}{k_1^2 \Phi_1(\phi)}\right]_{r=r_+}, \quad \alpha_{DC} = \bar{\alpha}_{DC} = \left[\frac{4\pi q}{k_1^2 \Phi_1(\phi)}\right]_{r=r_+}$$

Also possible for inhomogeneous lattices [AD, Gauntlett]

New insight from Holography

Two terms of σ_{DC} come from different physics!

- Fix a combination of E and ∇T such that we have no heat current
- In this situation we still have finite electric current

$$\sigma_{Q=0} = \sigma - \frac{\alpha \bar{\alpha} T}{\bar{\kappa}} \Rightarrow$$
$$\sigma_{Q=0} = \sigma_{ccs} = \left[\frac{Z(\phi)s}{4\pi e^{2V_1}}\right]_{r=r_+}$$

- Has to come from evolution of neutral pairs
- This contribution is exponentially suppressed in DC transport for Fermi liquids!
- Low T behaviour of σ_{DC} can be determined by either σ_{ccs} or σ_{dis}

Hall angle [AD, Blake]

Weak coupling fantasy!

- Particles and holes deflected in the same direction
- Opposite charge \Rightarrow Don't contribute to J_y
- Expect dissipative component of the current to dominate Hall angle

Hall angle [AD, Blake]

Same model, same ansatz with $B \neq 0$ this time lead to

$$\begin{split} \sigma_{xx} &= \left. \frac{e^{2V}k^2\Phi(B^2Z^2+q^2+Ze^{2V}k^2\Phi)}{(B^2Z+e^{2V}k^2\Phi)^2+B^2q^2} \right|_{r_+} \\ \sigma_{xy} &= \left. \frac{Bq(B^2Z^2+q^2+2Ze^{2V}k^2\Phi))}{(B^2Z+e^{2V}k^2\Phi)^2+B^2q^2} \right|_{r_+} \end{split}$$

A bit of an ugly mess but...

$$\theta_{H} = \frac{Bq}{e^{2V}k^{2}\Phi} \left[\frac{B^{2}Z^{2} + q^{2} + 2Ze^{2V}k^{2}\Phi}{B^{2}Z^{2} + q^{2} + Ze^{2V}k^{2}\Phi} \right] \Big|_{r_{+}}$$
$$= \frac{Bq}{s k^{2}\Phi} \mathcal{W} = \frac{q^{2}}{k^{2} s \Phi} \frac{B}{q} \mathcal{W}$$

• Notice 1 < W < 2

Hall angle [AD, Blake]

For
$$B^{1/2} << T << \mu$$

$$heta_H \propto rac{B}{q} \sigma_{dis}^{B=0}$$
 $\sigma_{DC}^{B=0} = \sigma_{ccs}^{B=0} + \sigma_{dis}^{B=0}$

 The Hall angle scaling with T can be independent how σ^{B=0}_{DC} scales if σ^{B=0}_{ccs} dominates

 Can't have this with weakly coupled Fermions in DC conductivity. Particle-hole creation is gapped at low energies.

- **1** Introduction/Motivation
- 2 The Holographic Lab
- 3 Holographic Charge Oscillations
- 4 Summary / Outlook

- How does a point-like object affect a uniform charge distribution?
- Particle statistics/Interactions leave imprint on response
 - Debye Hückel model
 - Lindhard theory
- Holography?
 Similar sort of questions in [Horowitz, Iqbal, Santos, Way]

Debye - Hückel model

- Write equation for electric potential ϕ with sources
- Assume local thermodynamic equilibrium \rightarrow Boltzmann statistics for ρ
- Good approximation at high temperatures T

$$\nabla^2 \phi = -\left(Q \,\delta^3(r) - q \,\rho_0 + q \,\rho(r)\right)$$
$$\rho(r) = \rho_0 \,e^{-q\phi(r)/k_B T} \approx \rho_0 \,\left(1 - q\phi(r)/k_B T\right)$$
$$\left(\nabla^2 - \lambda_D^{-2}\right) \phi = -Q \,\delta(r), \quad \lambda_D^2 = k_B T/q^2 n_0$$
$$\Rightarrow \phi = \frac{Q}{4\pi r} \,e^{-r/\lambda_D}$$

Lindhard Theory

- Perturb Hamiltonian by $\Delta H = q \, \phi(r)$
- \blacksquare States smoothly deformed $|k\rangle \rightarrow |\psi(k)\rangle$
- Statistics captured by Fermi Dirac distribution f

$$\rho^{\text{ind}}(r) = q g_s \int \frac{d^3k}{(2\pi)^3} f(k) \left[|\langle r|\psi(k)\rangle|^2 - |\langle r|k\rangle|^2 \right]$$

Relevant quantity to extract is the charge susceptibility

$$\chi_Q(k) = \frac{\rho^{\text{ind}}(k)}{k^2 \phi(k)}$$

Linhard theory - Friedel Oscillations

• Discontinuity of f at $k = k_F$ smooths out to a log in χ_Q

$$\chi_Q(k) = \frac{k_{TF}^2}{k^2} F(k/2k_F)$$
$$F(x) = \frac{1}{2} + \frac{1-x^2}{4x} \log \left| \frac{x+1}{x-1} \right|$$

Translating to real space Friedel oscillations for long distances

$$\rho^{\rm ind} \propto r^{-3} \cos(2k_F r)$$

• Consider a charged black hole with AdS asymptotics

 $A \approx \mu_{(0)} dt + \rho_{(0)} z dt + \cdots$

We want to introduce a (local) perturbation on the boundary

 $\mu \to \mu_{(0)} + \delta \mu(\vec{x})$

• And read off the induced charge $\delta \rho(\vec{x})$

⇒ Static modes of longitudinal sector in Einstein-Maxwell

 \Rightarrow Work in momentum space $\delta
ho(k)\propto\chi(k)\,\delta\mu(k)$

Cases to consider:

- $\mu = 0, T = 0$, i.e. AdS_4
- $\mu = 0, T > 0$, i.e. Sch. black brane
- $\mu \neq 0$, T > 0, i.e. RN black brane
- $\mu \neq 0$, T = 0, i.e. extremal RN

• For $\mu = 0$, T = 0 scale invariance implies $\chi(k) = k$

 Can also see from exact bulk perturbation [Chesler, Lucas, Sachdev]

$$ds_4^2 = z^{-2} \left(-dt^2 + dx_1^2 + dx_2^2 + dz^2 \right)$$

$$\delta A_t = e^{i\vec{k}\cdot\vec{x}} e^{-|\vec{k}|z} \to e^{i\vec{k}\cdot x} \left(1 - |\vec{k}|z + \cdots \right)$$

• For a Gaussian source $\delta \mu(r) = C e^{-r^2/2R^2}$ this gives

- For $\mu = 0$, T > 0 need to do numerics
- Long range behaviour captured by analytic structure of χ(k) in complex k-plane
- Poles on Im axis give exponential fall off $\delta \rho \approx r^{-1/2} e^{-{\rm Im} k \, r}$

- For $\mu \neq 0$, $T >> \mu$ looks similar to $\mu = 0$ case
- There is a $T_c \approx .33 \mu$ where two poles acquire non-zero real parts!
- This is when charge oscillations happen $\delta \rho \propto e^{-\lambda_1 r} \cos(\lambda_2 r) / \sqrt{r}$

- At $T << \mu$ more poles coalesce to branch cuts
- They end at $k_*/\mu_0 = \pm 2^{-3/2} \pm i/2$
- Charge oscillations remain exponentially damped!

Charge oscillations in coordinate space for Gaussian source at $T_c > T > 0$ and T = 0

Distance between nodes matches with $\frac{\pi}{\text{Rek}_*}$ of leading pole

- Charge oscillations present in holography but not quite Friedel. Result of strong coupling or large N?
- **•** Reasonable to expect that from field theory? e.g. $\mathcal{N} = 4$

- **1** Introduction/Motivation
- 2 The Holographic Lab
- 3 Holographic Charge Oscillations
- 4 Summary / Outlook

Summary / Outlook

- Holography is a good tool to study transport in strongly coupled systems
- No assumption of quasiparticles
- Offers new insight for real world problems
- Understand better the physics of the new ground states
- Friedel oscillations with exponential damping at strong strong coupling (or large N?)
- DC transport from bh horizons: General statement?