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Introduction /Motivation

Some fun homework for the holographista:

m Part |

m Incoherent transport
m Anomalous scaling of Hall angle

m Part Il

m Charge screening in holographic theories



Charge transport in real materials

Drude peak

/

Incoherent metal

Mott insulator
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m Materials with charged d.o.f. can be

m Coherent metals with a well defined Drude peak
m Insulators
m Incoherent conductors of electricity

m Interactions expected to become important in the incoherent
phase — Possible description in AdS/CFT?



The Cuprates
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The Cuprates are real life example of :
m Incoherent transport

m Anomalous scaling of conductivity and Hall angle with T’

ppc x T, Oy o T2



Anomalous Hall angle scaling

m Introducing a magnetic field B results in currents in two
directions J, and J,.

m There is 0,, and oy,
m Hall angle is 05 = 04y /042

m Fermi liquids + lattice Umklapp scattering lead to
oB ~T72 g ~T?

m More generally, slow momentum relaxation predicts aggo and
O scale the same way with temperature
[Hartnoll, Kovtun, Muller, Sachdev]

m Strange metals surprisingly have
0B’ ~ T~ Ou~T7?

m Holography evades that? Yes!
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AdS/CMT

The recipe says:

Field Theory Bulk
Start with CFT, AdSg41 Asymptotics
Chemical potential p U(1) electric charge
Finite T' Killing horizon
2-point function G j;(w) Bulk perturbation 6A,, ...

Use Kubo’s formula



Perfect Holographic Conductor

Do it in D = 4 Einstein-Maxwell with AdS asymptotics:

1
[,EM:R—ZFMVF“U-I-IZ

ds? = —U(r)dt* + U(r) " dr? 4 2 (dx% + dm%)
A=a(r)dt

=1

Background black hole has temperature 1", energy F, pressure P,
entropy s and charge ¢.



Perfect Holographic Conductor

m To calculate conductivity need to source A, = —e_"*’t% on
the boundary
m Momentum (dg;,) couples because of background charge

Infalling BC 0A, = et (Eze —jr 4.

w

v ¢ (T s)*
wE+ P (E_|.p)2

w<<pu=oc=j/E, =

[Hartnoll, Herzog]
Conserved momentum — Infinite DC conductivity — Explicitly

break translations on the boundary theory



Classical Drude model

(Missing) Physics at w << p
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Classical Drude model

This is how it looks like
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Fourier/Ohm law

m Apart from electric currents one also has a thermal current Q

m More generally, transport coefficients are packaged in a matrix

(é)‘(é} g)(—wb;)/ff)

m With VT a temperature gradient



Holographic Lattice

AdSQ X R2 AdS4

r=r4 r =400
X

To add momentum dissipation introduce a UV - IR benign lattice:

m Keep UV fixed point = relevant deformation O(z)
m Drude physics = T' = 0 horizon restores translations

m Charge density is a universal relevant operator = Impose
Av=p(@) = JH (@) r7t 4
[Hartnoll, Hofman][Horowitz, Santos, Tong]

wx) = po + A(z), (A), =0

m /9 = chemical potential, A’(x) = periodic electric field



Inhomogeneous Lattices

The task is:

1) Solve elliptic non-linear PDEs to find background rippled
black holes

[Horowitz, Santos, Tong] [D&G]




Inhomogeneous Lattices

The task is:

2) Solve non-elliptic linear PDEs to find perturbations around
numerical background to extract conductivity

[Horowitz, Santos, Tong] [D&G]




Inhomogeneous Lattices
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m Our Drude peaks are there

m Nice, now get rid of them!
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RG/Holographic picture

I\ /I {7

AdSy x R?, HSV, ...

| Charge dominated RG flows, translations restored in IR —
Coherent transport

Il Lattice (+charge) dominated RG flows, translations broken in
IR — incoherent transport
[AD, Hartnoll] [AD, Gauntlett]



Q-lattices

Consider a simple model with a global U(1) in addition to the
gauged one [AD, Gauntlett]

1
5= / o) [R+ 6— 3 F? — |06f —m? |of
along with the ansatz
ds? = —U(r)dt? + U(r) " dr? + 21 () dag? 4 €2%2() dg2

A =a(r)dt, ¢ = et (1)

m 21 dependence drops out due to global U(1)
m Leads to ODEs both for background and perturbation
m Significant simplification

m Two real scalars with O; ~ cos(kz), Oz ~ sin(kz)



Conductivity from Q-lattices
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m Can model Metal - Insulator transitions

m Holography can describe incoherent transport!



RG/Holographic Picture

o Re w Re w

m QNM on the axis — coherent transport
m QNM off the axis — incoherent transport

m Recent check and also transition T [Davison, Gouteraux]



More general Q-lattices

Consider a more general situation where the instead of C?

s - / d'zy/=g [R ~ V(jel) - 32(#)F? - G2}

m Slightly more general setup

m Imagine some complex target instead of C
G(|2D)ld2|* ~ d¢? + f(¢) dx?

m The phase is compact and translations are broken by setting
X =kx

m Closely related models with axions
[Andrade, Withers]



More general Q-lattices

A polar decomposition yields

L=R— [00)° + 1 (o) (9x1)° + 22 (1) (9x2)°

+v (g - 2 2

The background ansatz in this notation just reduces to

dsi = —U(r)dt* + U(r) " dr? + €*V'(") daf + 2> daj
A=a(r)dt, ¢=0¢(r)

X1 =kizi, x2=koxo



Metallic - Insulating ground states

Imagining situations where
D (p) ~ P, Z~eP, Vo~ et?
[AD, Gauntlett][Gouteraux]

ds? = —r*dt*> + r~" dr® + r** dz? + r*? dz3

¢=—rklnr, A=r*dt, x1=kix1, x2=koxo

m Exponents u, vy, ... fixed by Lagrangian parameters §;, v, a.
m Use perturbative argument to find small 7" behaviour on the
horizon e.g.

Gr=r, ~—K'InT, s~ >

m So what?



Ohm/Fourier Law

More generally, combine E with thermal gradient VT to describe
thermoelectric effect

<gz>:<o‘aaT g§><—(vj_g)/zﬂ)

m Analytic argument to express DC transport coefficients in
terms of bh horizon data

[ Z(9)s 4mq? B
opC — |:471_€2V1 k12(1)1(d))3:| s = Occs + 0dis
B _ AmsT o _ 4mq
Rpc = [k12‘1>1(¢)]r_7.+ ; Qpe =0apc = k‘12‘1>1(¢)]7.—,‘+

m Also possible for inhomogeneous lattices [AD, Gauntlett]



New insight from Holography

Two terms of opc come from different physics!

m Fix a combination of £ and VT such that we have no heat
current

m In this situation we still have finite electric current

aaT
O'Q:() =0 — T =
_ [ Z(9)s
0Q=0 = Occs = A e2Vi

m Has to come from evolution of neutral pairs

m This contribution is exponentially suppressed in DC transport
for Fermi liquids!

m Low T behaviour of opc can be determined by either o..s or

Odis



Hall angle [aD, Biake]

Holes Particles Holes Particles

P,

Jo —> — ©B

Weak coupling fantasy!
m Particles and holes deflected in the same direction
m Opposite charge = Don't contribute to J,
m Expect dissipative component of the current to dominate Hall
angle



Hall angle [aD, Biake]

Same model, same ansatz with B # 0 this time lead to

eVE2®(B?Z2 + ¢* + Ze?V K2 D)

Ogx — (BQZ + e2VEk2®9)2 + B2¢? -
_ Bq(B*Z? + ¢* +22¢*V 2®))
T T (B2Z + 2VR)? + B2 |,

A bit of an ugly mess but...

0. — Bgq B2Z?% 4+ ¢> +22e*V K2
7 Ve | B222 + 2 + Ze2V k20 ||,
B 2 B
_Ba ,,_ ¢ B,
sk2® k2s® q

m Notice 1 < W < 2



Hall angle [aD, Biake]

For B2 << T << p

B 5_
9[{ X ggc?i;o

B=0

=0
Opc — Jccs +Udzs

m The Hall angle scaling with 7" can be independent how Uggo

scales if 729 dominates

m Can’t have this with weakly coupled Fermions in DC
conductivity. Particle-hole creation is gapped at low energies.
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Charge Screening

m How does a point-like object affect a uniform charge
distribution?

m Particle statistics/Interactions leave imprint on response

m Debye - Hiickel model
m Lindhard theory

m Holography?
Similar sort of questions in [Horowitz, Igbal, Santos, Way]



Debye - Hiickel model

m Write equation for electric potential ¢ with sources

m Assume local thermodynamic equilibrium — Boltzmann
statistics for p

m Good approximation at high temperatures T’

Vi =—(Q8(r) —qpo+qp(r))
p(r) = po e 0/*BT ~ 5y (1 — qo(r)/ksT)
(V2 =25 6 =—-Qé(r), b =kgT/¢*no
= ¢ = g e~ T/AD

Arr



Lindhard Theory

Perturb Hamiltonian by AH = q ¢(r)
States smoothly deformed |k) — |¢(k))
Statistics captured by Fermi - Dirac distribution f

3
P(r) = g g, / (;f)gf@) (1)) = [(rl) 2]

Relevant quantity to extract is the charge susceptibility

_ Pk
k2¢(k)

xqQ(k)



Linhard theory - Friedel Oscillations

m Discontinuity of f at k = kr smooths out to a log in xq

k2
xq(k) = = F(k/2kp)
1 1—22

F(z) = =
@=5+—7

log

r+1
r—1

m Translating to real space Friedel oscillations for long distances

P o 173 cos(2kpr)



Charge Screening in Holography
m Consider a charged black hole with AdS asymptotics
Azu(o)dt—l—p(o)zdt%—‘“

m We want to introduce a (local) perturbation on the boundary

1= o) + Op(%)

m And read off the induced charge 0p(%)
= Static modes of longitudinal sector in Einstein-Maxwell

= Work in momentum space dp(k) o< x(k) dpu(k)



Charge Screening in Holography

Cases to consider:
mu=0T=0,ie AdS

mu=0T>0,ie Sch. black brane
mu#0,T>0,ie RN black brane

mpu#0,T=0,ie extremal RN



Charge Screening in Holography

m For =0, T = 0 scale invariance implies x(k) = k
m Can also see from exact bulk perturbation
[Chesler, Lucas, Sachdev]

ds? = 272 (—dt2 + dz? + dz3 + dzz)

6A; = e+ To-lklz _ gk (1 — |kl z+-- )

m For a Gaussian source dyu(r) = C e ""/2F this gives
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Charge screening in holography

m For =0, T > 0 need to do numerics
m Long range behaviour captured by analytic structure of x (k)
in complex k—plane

m Poles on Im axis give exponential fall off 6p ~ r—1/2¢=Tmkr

40[p

Im[k/T]

-20+t

—40}

Re[k/T]



Charge screening in holography

m For u# 0, T >> p looks similar to u = 0 case

m There is a T, ~ .33 where two poles acquire non-zero real
parts!

m This is when charge oscillations happen
§p oc e~ M7 cos(Aar) /T

6F:

4

Im[k/u]
[=]
Im[k/u]

-1.0 —(‘)45 OjO Oi5 1t0 —i.O —6.5 OiO 0i5 1?0
Relk/y] Relk/u]



Charge screening in holography

m At 7' << p more poles coalesce to branch cuts
m They end at k,/pg = £273/2 +1/2
m Charge oscillations remain exponentially damped!

Im[k/p]
m{k/]

10 -05 00 05 10 -10 -05 00 05 10
Re[k/4] Re[k/1]



Charge screening in holography

Charge oscillations in coordinate space for Gaussian source at
T.>T >0and T =0

-20

In[o/(C-w)]

-30 -20

0 5 10 15 0 ) 10 15 20 25 30

Distance between nodes matches with 77— of leading pole

m Charge oscillations present in holography but not quite
Friedel. Result of strong coupling or large N?

m Reasonable to expect that from field theory? e.g. N =14
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Summary / Outlook

m Holography is a good tool to study transport in strongly
coupled systems

m No assumption of quasiparticles
m Offers new insight for real world problems
m Understand better the physics of the new ground states

m Friedel oscillations with exponential damping at strong strong
coupling (or large N?)

m DC transport from bh horizons: General statement?
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