Ultra-high Energy Neutrino Events at IceCube: Implications for the Standard Model and Beyond

P. S. Bhupal Dev

Consortium for Fundamental Physics, University of Manchester

C.-Y. Chen, PSBD, A. Soni, arXiv:1309.1764 [hep-ph]; and ongoing work.

"Meet Your Neighbour" Meeting, University of Liverpool

October 23, 2013

The University of Manchester

Outline

- Introduction
- UHE Events at IceCube
- Possible Sources
- Possible Interactions
- SM Predictions
- Implications for New Physics

Conclusion

Neutrinos: Friends across > 20 orders of Magnitude

[J. A. Formaggio and G. P. Zeller, Rev. Mod. Phys. 84, 1307 (2012)]

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 うへで

High-energy Neutrinos: Astrophysical Messengers

High-energy Neutrinos: Astrophysical Messengers

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のなぐ

(Ultra) High-energy Neutrino Detectors (Telescopes)

Super-Kamiokande, Baksan, Lake Baikal, ANTARES, AMANDA, IceCube, KM3Net,...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Neutrino Detection at IceCube

Cherenkov radiation from secondary particles (muons, electrons, hadrons).
Within the SM, neutrino interacts with matter only via weak (*W* and *Z*) gauge bosons.

$$u_{\ell} + N \rightarrow \begin{cases} \ell + X & (CC) \\ \nu_{\ell} + X & (NC) \end{cases}$$

CC Muon track (data)

CC electromagnetic/NC hadronic cascade shower (data)

CC tau 'double bang' (simulation)

UHE Neutrino Events at IceCube

• 2 cascade events with 615.9 days of data.

[IceCube Collaboration, Phys. Rev. Lett. 111, 021103 (2013)]

イロト イヨト イヨト イヨト

- 2

UHE Neutrino Events at IceCube

• 2 cascade events with 615.9 days of data.

[IceCube Collaboration, Phys. Rev. Lett. 111, 021103 (2013)]

Follow-up analysis: 26 more events between 20-300 TeV with 662 days of data.

[N. Whitehorn, Talk at IPA 2013, Madison; IceCube Collaboration, submitted to Science]

- 21 cascade events and 7 muon tracks.
- Total 28 events with 4.1σ excess over expected atmospheric background (10.6^{+5.0}/_{3.6} events).

Possible Sources of the UHE Neutrinos

Possible Source	N(1-2 PeV)	N(2 - 10 PeV)
Atm. Conv. [45, 46]	0.0004	0.0003
Cosmogenic–Takami [48]	0.01	0.2
Cosmogenic–Ahlers [49]	0.002	0.06
Atm. Prompt [47]	0.02	0.03
Astrophysical E^{-2}	0.2	1
Astrophysical $E^{-2.5}$	0.08	0.3
Astrophysical E^{-3}	0.03	0.06

[R. Laha, J. F. Beacom, B. Dasgupta, S. Horiuchi and K. Murase, Phys. Rev. D 88, 043009 (2013)]

- Atmospheric conventional (π/K) : unlikely (dominant flux < 100 TeV).
- Atmospheric prompt (charm): disfavored by IceCube data.
- Cosmogenic (GZK): very unlikely (dominant flux > 10³ PeV).
- Astrophysical (GRB, AGN, Early Supernovae, Baby Neutron Star, Star-burst Galaxies, Galaxy Clusters,...): plausible.
 - Power-law spectra: dΦ/dE ∝ E^{-s} (with s ≥ 2), e.g., Waxman-Bahcall flux. [E. Waxman and J. N. Bahcall, Phys. Rev. D 59, 023002 (1999)]
 - Flavor ratio of ν_e : ν_{μ} : $\nu_{\tau} = 1$: 1: 1 on Earth (due to neutrino oscillation). [J. Learned and S. Pakvasa, Astropart. Phys. 3, 267 (1995)]

New Physics?

- Several exotic phenomena have been invoked to explain the IceCube events, e.g.,
 - Decaying (PeV-scale) Dark Matter. [B. Feldstein, A. Kusenko, S. Matsumoto and T. T. Yanagida, arXiv:1303.7320 [hep-ph]; A. Esmaili and P. D. Serpico, arXiv:1308.1105 [hep-ph]]

- Resonant production of TeV-scale leptoquarks. [V. Barger and W. -Y. Keung, Phys. Lett. B (2013)]
- Other exotics: Decay of massive neutrinos to lighter ones over cosmological distance scales [P. Baerwald, M. Bustamante and W. Winter, JCAP 1210, 020 (2012); S. Pakvasa, A. Joshipura and S. Mohanty, Phys. Rev. Lett. 110, 171802 (2013)]
- Mirror neutrinos [A. S. Joshipura, S. Mohanty and S. Pakvasa, arXiv:1307.5712 [hep-ph]]
- Before embarking on such speculations, desirable to know the SM expectation with better accuracy.
- With more statistics, could provide a unique test of the SM up to the highest energies ever observed!

Main aim and motivation of our work. [C.-Y. Chen, PSBD, A. Soni, arXiv:1309.1764 [hep-ph]]

SM Neutrino Cross Sections

- Neutrino-nucleon cross sections mediated by *t*-channel *W* and *Z* dominant ones.
- PDF uncertainties become important at higher energies.
- Important exception: Glashow resonance.
 - On-shell production of W⁻ in v

 e e⁻ scattering. [S. Glashow, Phys. Rev. 118, 316 (1960)]
 - Peak is at energy $E_{\nu} = m_W^2/(2m_e) = 6.3$ PeV.
 - Proposed as an explanation of the PeV events. [A. Bhattacharya, R. Gandhi, W. Rodejohann and A. Watanabe, JCAP 1110, 017 (2011); V. Barger, J. Learned and S. Pakvasa, arXiv:1207.4571 [astro-ph.HE]]
 - Disfavored by a dedicated follow-up analysis. [IceCube Collaboration, Phys. Rev. Lett. 111, 021103 (2013)]

Event Rate

$$\frac{dN}{dE_{\rm em}} = T \cdot \Omega \cdot N_{\rm eff}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \Phi_{\nu}(E_{\nu})$$

- T=662 days (for IceCube data collected between May 2010-May 2012).
- $N_{\rm eff}(E_{\nu}) = N_A V_{\rm eff}(E_{\nu})$ with $V_{\rm eff}^{\rm max} \sim 0.4 \ {\rm km}^3$ at PeV.
- $E_{\nu}^2 \Phi_{\nu,\text{tot}}(E_{\nu}) = 3.6 \times 10^{-8} \text{ GeV} \cdot \text{sr}^{-1} \cdot \text{cm}^{-2} \cdot \text{s}^{-1}$ and an equal flavor ratio.
- Ω = 2π sr for an isotropic flux in the southern hemisphere (downward events at IceCube), while for northern hemisphere (upward events), must include Earth attenuation effects by a shadow factor [R. Gandhi, C. Quigg, M. H. Reno and I. Sarcevic, Astropart. Phys. 5, 81 (1996)]

$$S(E_{\nu}) = \int_{-1}^{0} d(\cos \theta) \exp[-z(\theta)/L_{\text{int}}(E_{\nu})]$$

- Use PREM for Earth matter effects and column depth z.
- Deposited em-equivalent energy in terms of incoming neutrino energy depends on the interaction channel.

$$E_{\mathrm{em,had}} = F_X y E_{\nu}, \ E_{\mathrm{em,e}} = (1-y) E_{\nu}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

SM Prediction for Event Rate

channel	hadron	electron	muon	total
$(u + ar{ u}) N NC$	$1.54^{+0.12}_{-0.14}$	-	-	$1.54^{+0.12}_{-0.14}$
$(u_{e}+ar{ u}_{e})N$ CC	$2.42^{+0.30}_{-0.09}$	$6.74^{+0.75}_{-0.13}$	-	$9.15^{+1.05}_{-0.22}$
$(u_{\mu}+ar{ u}_{\mu})$ N CC	$1.62^{+0.22}_{-0.06}$	-	$4.39^{+0.53}_{-0.12}$	$6.01^{+0.75}_{-0.18}$
$(u_ au+ar u_ au)$ N CC	$2.00^{+0.04}_{-0.05}$	$0.155^{+0.004}_{-0.004}$	$0.153^{+0.003}_{-0.003}$	$2.31^{+0.05}_{-0.06}$
$\bar{\nu}_{e}e$	0.09	0.01	0.01	0.11
total SM	$7.66^{+0.68}_{-0.34}$	$6.90\substack{+0.75\\-0.14}$	$5.02^{+0.33}_{-0.14}$	$19.58^{+1.77}_{-0.61}$

(日)、<問)、<E)、<E</p>

200

Zenith Angle Distribution

- More downgoing events than upgoing due to the earth attenuation effects.
- No 'muon deficit' problem so far Number of muon tracks predicted 6.01^{+0.75}_{-0.18} is consistent with the observed 7 tracks.
- Apparent cut-off above 2 PeV due to the E⁻² flux.
- $\bullet\,$ No significant energy gap between 0.3 1 PeV, and \sim 2 events should be observed with more data.

Conclusion

- A lot of interest on the origin of UHE neutrino events at IceCube.
- From particle physics point of view,
 - Current data consistent with the SM explanation.
 - Does not require any exotic new physics scenario.
 - With more data, could provide us a unique test of the SM up to PeV and beyond.
 - Any significant deviations will call for BSM physics.
- From astrophysics point of view,
 - Need to pin down the source(s) of UHE neutrinos.
 - Potentially the first detection of astrophysical high-energy neutrino flux.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

- Could open a new avenue for a number of astrophysical objects and mechanism.
- Golden era of UHE Neutrino Astrophysics?

Differential Cross Sections

$$\begin{aligned} \frac{d^2 \sigma_{\nu N}^{CC}}{dxdy} &= \frac{2G_F^2 M_N E_{\nu}}{\pi} \left(\frac{M_W^2}{Q^2 + M_W^2} \right)^2 \left[xq(x,Q^2) + x\bar{q}(x,Q^2)(1-y)^2 \right], \\ \frac{d^2 \sigma_{\nu N}^{NC}}{dxdy} &= \frac{G_F^2 M_N E_{\nu}}{2\pi} \left(\frac{M_Z^2}{Q^2 + M_Z^2} \right)^2 \left[xq^0(x,Q^2) + x\bar{q}^0(x,Q^2)(1-y)^2 \right], \\ \text{where } q &= \frac{u+d}{2} + s + b, \\ \bar{q} &= \frac{\bar{u} + \bar{d}}{2} + c + t, \\ q^0 &= \frac{u+d}{2} (L_u^2 + L_d^2) + \frac{\bar{u} + \bar{d}}{2} (R_u^2 + R_d^2) \\ &\quad + (s+b)(L_d^2 + R_d^2) + (c+t)(L_u^2 + R_u^2), \\ \bar{q}^0 &= \frac{u+d}{2} (R_u^2 + R_d^2) + \frac{\bar{u} + \bar{d}}{2} (L_u^2 + L_d^2) \\ &\quad + (s+b)(L_d^2 + R_d^2) + (c+t)(L_u^2 + R_u^2), \end{aligned}$$

with $L_u = 1 - (4/3)x_W$, $L_d = -1 + (2/3)x_W$, $R_u = -(4/3)x_W$ and $R_d = (2/3)x_W$. [R. Gandhi, C. Quigg, M. H. Reno and I. Sarcevic, Astropart. Phys. **5**, 81 (1996)]

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のなぐ

Skymap

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで